

Lecture Notes in Computer Science 4935
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Barbara Chapman Weimin Zheng
Guang R. Gao Mitsuhisa Sato
Eduard Ayguadé Dongsheng Wang (Eds.)

A Practical
Programming Model for
the Multi-Core Era

3rd International Workshop
on OpenMP, IWOMP 2007
Beijing, China, June 3-7, 2007
Proceedings

13

Volume Editors

Barbara Chapman
University of Houston, TX, USA
E-mail: bmchapman@earthlink.net

Weimin Zheng
Tsinghua University, Beijing, China
E-mail: zwm-dcs@tsinghua.edu.cn

Guang R. Gao
University of Delaware, Newark, DE, USA
E-mail: ggao@capsl.udel.edu

Mitsuhisa Sato
University of Tsukuba, Japan
E-mail: msato@ccs.tsukuba.ac.jp

Eduard Ayguadé
Technical University of Catalunya (UPC), Barcelona, Spain
E-mail: eduard@ac.upc.edu

Dongsheng Wang
Tsinghua University, Beijing, China
E-mail: wds@tsinghua.edu.cn

Library of Congress Control Number: 2008928764

CR Subject Classification (1998): D.1.3, D.1, D.2, F.2, G.1-4, J.2, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69302-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69302-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12281428 06/3180 5 4 3 2 1 0

Preface

The Third International Workshop on OpenMP, IWOMP 2007, was held at
Beijing, China. This year’s workshop continued its tradition of being the premier
opportunity to learn more about OpenMP, to obtain practical experience and
to interact with OpenMP users and developers. The workshop also served as a
forum for presenting insights gained by practical experience, as well as research
ideas and results related to OpenMP.

A total of 28 submissions were received in response to a call for papers. Each
submission was evaluated by three reviewers and additional reviews were received
for some papers. Based on the feedback received, 22 papers were accepted for
inclusion in the proceedings. Of the 22 papers, 14 were accepted as full papers.
We also accepted eight short papers, for each of which there was an opportunity
to give a short presentation at the workshop, followed by poster demonstrations.
Each paper was judged according to its originality, innovation, readability, and
relevance to the expected audience. Due to the limited scope and time of the
workshop and the high number of submissions received, only 50% of the total
submissions were able to be included in the final program.

In addition to the contributed papers, the IWOMP 2007 program featured
several keynote and banquet speakers: Trevor Mudge, Randy Brown, and Shah,
Sanjiv. These speakers were selected due to their significant contributions and
reputation in the field. A tutorial session and labs were also associated with
IWOMP 2007.

We are deeply grateful to the Program Committee members. The large num-
ber of submissions received and the diverse topics and coverage of the topics
made this review process a particular challenging one. Also, the Program Com-
mittee was working under a very tight schedule. We wish to thank all Program
Committee members for their assistance in organizing the IWOMP program and
determining the paper selection guidelines. Without the solid work and dedica-
tion of these committee members, the success of this program, and ultimately
the workshop itself, would not have been possible.

We appreciate the contribution of Wenguang Chen and his local team at Ts-
inghua University, Beijing—in particular, the Local Chair Wenguang Chen—who
organized and handled the workshop website for paper submission and review.
We also wish to thank the contributions of members of the Organization Com-
mittee. We acknowledge the solid work by Dieter an Mey, Ruud van der Pas
and Wei Xue for their dedication in organizing the lab, tutorial and workshop
sessions. We thank the publicity Co-chairs Federico Massaioli and Dongsheng
Wang for their hard work to publicize the IWOMP information under very tight
schedule constraints, and to all those who helped with the organization of the
final program, the design and maintenance of the workshop websites, the solici-
tation of sponsorships and support, and numerous other matters related to the

VI Preface

local arrangement of the conferences. We also thank the Publication Co-chair
Eduard Ayguadé for his work on a special issue based on papers from IWOMP.
We are deeply impressed by the efficiency, professionalism and dedication of all
of this work.

We would also like to express our gratitude for the support and sponsorship
we have received from Intel, Sun Microsystems, the OpenMP Architecture Re-
view Board (ARB), Tsinghua University and University of Delaware. Finally,
we give special thanks to Ruini Xue, Liangping Lv, Wenhong Ke at Tsinghua
University and Liping Xue and Long Chen at the University of Delaware for
their assistance in this endeavor.

April 2008 Barbara Chapman
Weimin Zheng

Bronis R. de Supinski
Guang R. Gao
Mitsuhisa Sato

Organization

Steering Committee

Bronis R. de Supinski Chair of the Steering Committee, NNSA ASC,
LLNL, USA

Dieter an Mey CCC, RWTH Aachen University, Germany
Eduard Ayguade Barcelona Supercomputing Center (BSC), Spain
Mark Bull EPCC, UK
Barbara Chapman CEO of cOMPunity, USA
Guang R. Gao University of Delaware, USA
Rudi Eigenmann Purdue University, USA
Michael Krajecki University of Reims, France
Ricky A. Kendall ORNL, USA
Rick Kufrin NCSA, USA
Federico Massaioli CASPUR, Italy
Larry Meadows Intel, USA
Matthias Mueller ZIH, TU Dresden, Germany
Arnaud Renard University of Reims, France
Mitsuhisa Sato University of Tsukuba, Japan
Sanjiv Shah Intel, OpenMP CEO, USA
Ruud van der Pas Sun Microsystems, Netherlands
Matthijs van Waveren Fujitsu, Germany
Michael Wong IBM, USA
Weimin Zheng Tsinghua University, China

Organizing Committee

General Co-chairs
Barbara Chapman University of Houston, USA
Weimin Zheng Tsinghua University, China

Publicity Co-chairs

Wenguang Chen Tsinghua University, China
Federico Massaioli CASPUR, Rome, Italy
Dongsheng Wang Tsinghua University, China

Publication Co-chairs
Eduard Ayguadé Barcelona Supercomputing Center (BSC), Spain
Dongsheng Wang Tsinghua University, China

VIII Organization

Short Paper/Poster Session

Chair
Matthias Mueller ZIH, TU Dresden, Germany

Local Co-chair
Junqing Yu Huazhong University of Science and Technology,

China

Laboratory

Chair
Dieter an May CCC, RWTH Aachen University, Germany

Local Co-chair
Wei Xue Tsinghua University, China

Vendor Session
Chair
Ruud van der Pas Sun Microsystems

Local Co-chair
Dongsheng Wang Tsinghua University, China

Local Arrangements Chair

Wenguang Chen Tsinghua University, China

Program Committee

Chair
Guang R. Gao University of Delaware, USA

Vice Chair
Mitsuhisa Sato University of Tsukuba, Japan

Members
Dieter an Mey RWTH Aachen University, Germany
Roch Archambault IBM, USA
Eduard Ayguadé Barcelona Supercomputing Center (BSC), Spain
Wenguang Chen Tsinghua University, China
Nawal Copty Sun, USA
Luiz DeRose Cray Inc., USA
Bronis R. de Supinski LLNL, USA
Rudi Eigenmann Purdue University, USA
Xiaobing Feng Institute of Computing Technology, CAS, China
Guang R. Gao University of Delaware, USA
Hironori Kasahara University of Waseda, Japan
Ricky A. Kendall ORNL, USA

Organization IX

Michaël Krajecki Université de Reims Champagne-Ardenne, France
Rick Kufrin NCSA/University of Illinois, USA
Federico Massaioli CASPUR, Rome, Italy
Larry Meadows Intel, USA
Bernd Mohr Research Centre Juelich, ZAM, Germany
Matthias S. Mueller Technical University of Dresden, Germany
Kevin K. O’Brien IBM, USA
Ruud van der Pas Sun Microsystems, Netherlands
Mitsuhisa Sato University of Tsukuba, Japan
Xinmin Tian Intel, USA

Table of Contents

A Proposal for Task Parallelism in OpenMP . 1
Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger,
Yuan Lin, Federico Massaioli, Ernesto Su, Priya Unnikrishnan, and
Guansong Zhang

Support for Fine Grained Dependent Tasks in OpenMP 13
Oliver Sinnen, Jsun Pe, and Alexei Vladimirovich Kozlov

Performance Evaluation of a Multi-zone Application in Different
OpenMP Approaches . 25

Haoqiang Jin, Barbara Chapman, and Lei Huang

Transactional Memory and OpenMP . 37
Miloš Milovanović, Roger Ferrer, Osman S. Unsal, Adrian Cristal,
Xavier Martorell, Eduard Ayguadé, Jesús Labarta, and Mateo Valero

OpenMP on Multicore Architectures . 54
Christian Terboven, Dieter an Mey, and Samuel Sarholz

Supporting OpenMP on Cell . 65
Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen, and
Tao Zhang

CMP Cache Architecture and the OpenMP Performance 77
Jie Tao, Kim D. Hoàng, and Wolfgang Karl

Exploiting Loop-Level Parallelism for SIMD Arrays Using OpenMP 89
Con Bradley and Benedict R. Gaster

OpenMP Extensions for Irregular Parallel Applications on Clusters 101
Jue Wang, Changjun Hu, Jilin Zhang, and Jianjiang Li

Optimization Strategies Using Hybrid MPI+OpenMP Parallelization
for Large-Scale Data Visualization on Earth Simulator 112

Li Chen and Issei Fujishiro

An Investigation on Testing of Parallelized Code with OpenMP 125
Robert Barnhart, Christian Trefftz, Paul Jorgensen, and Yonglei Tao

Loading OpenMP to Cell: An Effective Compiler Framework for
Heterogeneous Multi-core Chip . 129

Haitao Wei and Junqing Yu

OpenMP Implementation of Parallel Linear Solver for Reservoir
Simulation . 134

Changjun Hu, Jilin Zhang, Jue Wang, and Jianjiang Li

XII Table of Contents

Parallel Data Flow Analysis for OpenMP Programs 138
Lei Huang, Girija Sethuraman, and Barbara Chapman

Design and Implementation of OpenMPD: An OpenMP-Like
Programming Language for Distributed Memory Systems 143

Jinpil Lee, Mitsuhisa Sato, and Taisuke Boku

A New Memory Allocation Model for Parallel Search Space Data
Structures with OpenMP . 148

Christophe Jaillet and Michaël Krajecki

Implementation of OpenMP Work-Sharing on the Cell Broadband
Engine Architecture . 153

Jun Sung Park, Jung-Gyu Park, and Hyo-Jung Song

Toward an Automatic Code Layout Methodology . 157
Joseph B. Manzano, Ziang Hu, Yi Jiang, Ge Gan,
Hyo-Jung Song, and Jung-Gyu Park

An Efficient OpenMP Runtime System for Hierarchical Architectures . . . 161
Samuel Thibault, François Broquedis, Brice Goglin,
Raymond Namyst, and Pierre-André Wacrenier

Problems, Workarounds and Possible Solutions Implementing the
Singleton Pattern with C++ and OpenMP . 173

Michael Suess and Claudia Leopold

Web Service Call Parallelization Using OpenMP . 185
Sébastien Salva, Clément Delamare, and Cédric Bastoul

Distributed Implementation of OpenMP Based on Checkpointing Aided
Parallel Execution . 195

Éric Renault

Author Index . 207

A Proposal for Task Parallelism in OpenMP

Eduard Ayguadé1, Nawal Copty2, Alejandro Duran1, Jay Hoeflinger3,
Yuan Lin2, Federico Massaioli4, Ernesto Su3, Priya Unnikrishnan5,

and Guansong Zhang5

1 BSC-UPC
2 Sun Microsystems

3 Intel
4 CASPUR

5 IBM

Abstract. This paper presents a novel proposal to define task paral-
lelism in OpenMP. Task parallelism has been lacking in the OpenMP
language for a number of years already. As we show, this makes cer-
tain kinds of applications difficult to parallelize, inefficient or both. A
subcommittee of the OpenMP language committee, with representatives
from a number of organizations, prepared this proposal to give OpenMP
a way to handle unstructured parallelism. While defining the proposal we
had three design goals: simplicity of use, simplicity of specification and
consistency with the rest of OpenMP. Unfortunately, these goals were in
conflict many times during our discussions. The paper describes the pro-
posal, some of the problems we faced, the different alternatives, and the
rationale for our choices. We show how to use the proposal to parallelize
some of the classical examples of task parallelism, like pointer chasing
and recursive functions.

1 Introduction

OpenMP grew out of the need to standardize the directive languages of several
vendors in the 1990s. It was structured around parallel loops and meant to handle
dense numerical applications. But, as the sophistication of parallel programmers
has grown and the complexity of their applications has increased, the need for a
less structured way to express parallelism with OpenMP has grown. Users now
need a way to simply identify units of independent work, leaving the decision
about scheduling them to the runtime system. This model is typically called
“tasking” and has been embodied in a number of projects, for example Cilk [1].

The demonstrated feasibility of previous OpenMP-based tasking extensions
(for example workqueueing [2] and dynamic sections [3]) combined with the
desire of users to standardize it, has caused one of the priorities of the OpenMP
3.0 effort to be defining a standardized tasking dialect. In September of 2005, the
tasking subcommittee of the OpenMP 3.0 language committee began meeting,
with a goal of defining this tasking dialect. Representatives from Intel, UPC,
IBM, Sun, CASPUR and PGI formed the core of the subcommittee.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 E. Ayguadé et al.

This paper, written by some of the tasking subcommittee members, is a de-
scription of the resulting tasking proposal, including our motivations, our goals
for the effort, the design principles we attempted to follow, the tough decisions
we had to make and our reasons for them. We will also present examples to
illustrate how tasks are written and used under this proposal.

2 Motivation and Related Work

OpenMP “is somewhat tailored for large array-based applications”[4]. This is
evident in the limitations of the two principal mechanisms to distribute work
among threads. In the loop construct, the number of iterations must be deter-
mined on entry to the loop and cannot be changed during its execution. In the
sections construct, the sections are statically defined at compile time.

A common operation like a dynamic linked list traversal is thus difficult to
parallelize in OpenMP. A possible approach, namely the transformation at run
time of the list to an array, as shown in fig. 1, pays the overheads of the array con-
struction, which is not easy to parallelize. Another approach, using the single
nowait construct as shown in fig. 2, can be used. While elegant, it’s non-intuitive,
and inefficient because of the usually high cost of the single construct[5].

1 p = l i s t h e ad ;
2 num elements=0;
3 while (p) {
4 l i s t i t e m [num elements++]=p ;
5 p=next (p) ;
6 }
7 #pragma omp paral lel for
8 for (int i =0; i<num elements ; i++)
9 p roc e s s (l i s t i t e m [i]) ;

Fig. 1. Parallel pointer chasing with
the inspector-executor model

#pragma omp paral lel private (p)
{

p = l i s t h ea d ;
while (p) {

#pragma omp single nowait
p roc e s s (p) ;

p = next (p) ;
}

}

Fig. 2. Parallel pointer chasing using
single nowait

Both techniques above lack generality and flexibility. Many applications (rang-
ing from document bases indexing to adaptive mesh refinement) have a lot of
potential concurrency, which is not regular in form, and varies with processed
data. Dynamic generation of different units of work, to be asynchronously exe-
cuted, allows one to express irregular parallelism, to the benefit of performance
and program structure. Nested parallelism could be used to this aim, but at the
price of significant performance impacts and increased synchronizations.

The present OpenMP standard also lacks the ability to specify structured
dependencies among different units of work. The ordered construct assumes a
sequential ordering of the activities. The other OpenMP synchronization con-
structs, like barrier, actually synchronize the whole team of threads, not work
units. This is a significant limitation on the coding of hierarchical algorithms
like those used in tree data structure traversal, multiblock grid solvers, adaptive

A Proposal for Task Parallelism in OpenMP 3

mesh refinement[6], dense linear algebra [7,8,9] (to name a few). In principle,
nested parallelism could be used to address this issue, as in the example shown
in fig. 3. However, overheads in parallel region creation, risks of oversubscribing
system resources, difficulties in load balancing, different behaviors of different
implementations, make this approach impractical.

1 void t r a v e r s e (b ina ry t r e e ∗p) {
2 #pragma omp paral lel sections num threads(2)
3 {
4 #pragma omp section
5 i f (p−> l e f t) t r a v e r s e (p−> l e f t) ;
6 #pragma omp section
7 i f (p−>r i g h t) t r a v e r s e (p−>r i g h t) ;
8 }
9 p roc e s s (p) ;

10 }

Fig. 3. Parallel depth-first tree traversal

The Cilk programming language[1] is an elegant, simple, and effective ex-
tension of C for multithreading, based on dynamic generation of tasks. It is
important and instructive, particularly because of the work-first principle and
the work-stealing technique adopted. However, it lacks most of the features that
make OpenMP very efficient in many computational problems.

The need to support irregular forms of parallelism in HPC is evident in fea-
tures being included in new programming languages, notably X10 [10] (activities
and futures), and Chapel [11] (the cobegin statement).

The Intel workqueueing model [2] was the first attempt to add dynamic task
generation to OpenMP. This proprietary extension allows hierarchical generation
of tasks by nesting of taskq constructs. Synchronization of descendant tasks is
controlled by means of implicit barriers at the end of taskq constructs. The
implementation exhibits some performance issues [5,8].

The Nanos group at UPC proposed Dynamic Sections as an extension to the
standard sections construct to allow dynamic generation of tasks [3]. Direct
nesting of section blocks is allowed, but hierarchical synchronization of tasks
can only be attained by nesting of a parallel region. The Nanos group also pro-
posed the pred and succ constructs to specify precedence relations among stat-
ically named sections in OpenMP [12]. These are issues that may be explored
as part of our future work.

The point-to-point synchronization explored at EPCC [13] improves in per-
formance and flexibility with respect to OpenMP barrier. However, the syn-
chronization still involves threads, not units of work.

3 Task Proposal

The current OpenMP specification (version 2.5) is based on threads. The execu-
tion model is based on the fork-join model of parallel execution where all threads

4 E. Ayguadé et al.

have access to a shared memory. Usually, threads share work units through the
use of worksharing constructs. Each work unit is bound to a specific thread for
its whole lifetime. The work units use the data environment of the thread they
are bound to.

Our proposal allows the programmer to specify deferrable units of work that
we call tasks. Tasks, unlike current work units, are not bound to a specific thread.
There is no a priori knowledge of which thread will execute a task. Task execution
may be deferred to a later time, and different parts of a task may be executed by
different threads. As well, tasks do not use the data environment of any thread
but have a data environment of their own.

3.1 Terminology

Task. A structured block, executed once for each time the associated task con-
struct is encountered by a thread. The task has private memory associated
with it that stays persistent during a single execution. The code in one in-
stance of a task is executed sequentially.

Suspend/resume point. A suspend point is a point in the execution of the
task where a thread may suspend its execution and run another task. Its
corresponding resume point is the point in the execution of the task that
immediately follows the suspend point in the logical code sequence. Thus,
the execution that is interrupted at a suspend point resumes at the matching
resume point.

Thread switching. A property of the task that allows its execution to be sus-
pended by one thread and resumed by a different thread, across a suspend/re-
sume point. Thread switching is disabled by default.

3.2 The Task Construct

The C/C++ syntax1 is as follows:

#pragma omp task [clause[[,]clause] ...]
structured-block

The thread that encounters the task construct creates a task for the as-
sociated structured block, but its execution may be deferred until later. The
execution gives rise to a task region and may be done by any thread in the
current parallel team.

A task region may be nested inside another task region, but the inner one is
not considered part of the outer one. The task construct can also be specified
inside any other OpenMP construct or outside any explicit parallel construct.
A task is guaranteed to be complete before the next associated thread or task
barrier completes.

1 Fortran syntax is not shown in this paper because of space limitations.

A Proposal for Task Parallelism in OpenMP 5

The optional clauses can be chose from:

– untied
– shared (variable-list)
– captureprivate (variable-list)
– private (variable-list)

The untied clause enables thread switching for this task. A task does not
inherit the effect of a untied clause from any outer task construct.

The remaining three clauses are related to data allocation and initialization
for a task. Variables listed in the clauses must exist in the enclosing scope, where
each is referred to as the original variable for the variable in the task.

References within a task to a variable listed in its shared clause refer to the
original variable. New storage is created for each captureprivate variable and
initialized to the original variable’s value. All references to the original variable
in the task are replaced by references to the new storage. Similarly, new storage
is created for private variables and all references to them in the task refer to
the new storage. However, private variables are not automatically initialized.

The default for all variables with implicitly-determined sharing attributes is
captureprivate.

3.3 Synchronization Constructs

Two constructs (taskgroup and taskwait) are provided for synchronizing the
execution of tasks.

The C/C++ syntax for taskgroup and taskwait is as follows:

#pragma omp taskgroup
structured-block

#pragma omp taskwait

The taskgroup construct specifies that execution will not proceed beyond its
associated structured block until all direct descendant tasks generated within it
are complete. The taskwait construct specifies that execution will not proceed
beyond it until all direct descendant tasks generated within the current task, up
to that point, are complete.

There is no restriction on where a taskgroup construct or a taskwait con-
struct can be placed in an OpenMP program. Taskgroup constructs can be
nested.

3.4 Other Constructs

When a thread encounters the taskyield construct, it is allowed to look for
another available task to execute. This directive becomes an explicit suspend/re-
sume point in the code. The syntax for C/C++ is:

#pragma omp taskyield

6 E. Ayguadé et al.

3.5 OpenMP Modifications

The tasking model requires various modifications in the OpenMP 2.5 specifica-
tion. We list some of these below.

– Execution Model. In the 2.5 specification, there is no concept of the de-
ferral of work or of suspend or resume points. In our proposal, a task may
be suspended/resumed and execution of the task may be deferred until a
later time. Moreover, a task may be executed by different threads during its
lifetime, if thread switching is explicitly enabled.

– Memory Model. In the 2.5 specification, a variable can be shared among
threads or be private to a thread. In the tasking model, a variable can be
shared among tasks, or private to a task. The default data sharing attributes
for tasks differs from the defaults for parallel constructs.

– Threadprivate data and properties. Inside OpenMP 2.5 work units,
threadprivate variables and thread properties (e.g. thread id) can be used
safely. Within tasks, this may not be the case. If thread switching is enabled,
the executing thread may change across suspend or resume points, so thread
id and threadprivate storage may change.

– Thread Barrier. In our proposal, a task is guaranteed to be complete before
the associated thread or task barrier completes. This gives a thread barrier
extra semantics that did not exist in the 2.5 specification.

– Locks. In the 2.5 specification, locks are owned by threads. In our proposal,
locks are owned by tasks.

4 Design Principles

Unlike the structured parallelism currently exploited using OpenMP, the tasking
model is capable of exploiting irregular parallelism in the presence of complicated
control structures. One of our primary goals was to design a model that is easy
for a novice OpenMP user to use and one that provides a smooth transition
for seasoned OpenMP programmers. We strived for the following as our main
design principles: simplicity of use, simplicity of specification and consistency
with the rest of OpenMP, all without losing the expressiveness of the model. In
this section, we outline some of the major decisions we faced and the rationale
for our choices, based on available options, their trade-offs and our design goals.

What Form Should the Tasking Construct(s) Take?

Option 1. A new work-sharing construct pair : It seemed like a natural exten-
sion of OpenMP to use a work-sharing construct analogous to sections to
set up the data environment for tasking and a task construct analogous to
section to define a task. Under this scheme, tasks would be bound to the
work-sharing construct. However, these constructs would inherit all the re-
strictions applicable to work-sharing constructs, such as a restriction against
nesting them. Because of the dynamic nature of tasks, we felt that this would
place unnecessary restrictions on the applicability of tasks and interfere with
the basic goal of using tasks for irregular computations.

A Proposal for Task Parallelism in OpenMP 7

Option 2. One new OpenMP construct : The other option was to define a
single task construct which could be placed anywhere in the program and
which would cause a task to be generated each time a thread encounters it.
Tasks would not be bound to any specific OpenMP constructs. This makes
tasking a very powerful tool and opens up new parallel application areas,
previously unavailable to the user due to language limitations. Also, using
a single tasking construct significantly reduces the complexity of construct
nesting rules. The flexibility of this option seemed to make it the most easy
to merge into the rest of OpenMP, so this was our choice.

Should We Allow Thread Switching and What Form Should It Take?
Thread switching is a concept that is alien to traditional OpenMP. In OpenMP,
a thread always executes a unit of work in a work-share from start to finish. This
has encouraged people to use the thread number to identify a unit of work, and
to store temporary data in threadprivate storage. This has worked very well
for the kind of parallelism that can be exploited in regular control structures.
However, tasking is made for irregular parallelism. Tasks can take wildly differing
amounts of execution time. It is very possible that the only thread eligible to
generate tasks might get stuck executing a very long task. If this happens, the
other threads in the team could be sitting idle, waiting for more tasks, and
starvation results. Thread switching would enable one of the waiting threads to
take over task-generation in a situation like this.

Thread switching provides greater flexibility and potentially higher perfor-
mance. It allows work-first execution of tasks, where a thread immediately exe-
cutes the encountered task and another thread continues where the first thread
left off. It has been shown that work-first execution can result in better cache
reuse [1]. However, switching to a new thread changes the thread number and
any threadprivate data being used, which could be surprising to an experienced
OpenMP programmer.

Balancing the benefits of thread switching against the drawbacks, it was de-
cided to allow thread switching in a limited and controlled manner. We decided
to disable thread switching by default. It is only allowed inside tasks using the
untied clause. Without the untied clause, the programmer can depend on the
thread number and threadprivate data in a task just as in other parts of
OpenMP.

Should the Implementation Guarantee That Task References to Stack
Data Are Safe? A task is likely to have references to the data on the stack of
the routine where the task construct appears. Since the execution of a task is
not required to be finished until the next associated task barrier, it is possible
that a given task will not execute until after the stack of the routine where it
appears is already popped and the stack data over-written, destroying local data
listed as shared by the task.

The committee’s original decision was to require the implementation to guar-
antee stack safety by inserting task barriers where required. We soon realized

8 E. Ayguadé et al.

that there are circumstances where it is impossible to determine at compile time
exactly when execution will leave a given routine. This could be due to a complex
branching structure in the code, but worse would be the use of setjmp/longjmp,
C++ exceptions, or even vendor-specific routines that unwind the stack. When
you add to this the problem of the compiler understanding when a given pointer
dereference is referring to the stack (even through a pointer argument to the rou-
tine), you find that in a significant number of cases the implementation would
be forced to conservatively insert a task barrier immediately after many task
constructs, severely restricting the parallelism possible with tasks.

Our decision was to simply state that it is the user’s responsibility to insert
any needed task barriers to provide any needed stack safety.

What Should Be the Default Data-Sharing Attributes for Variables
in Tasks? Data-sharing attributes for variables can be pre-determined, im-
plicitly determined or explicitly determined. Variables in a task that have pre-
determined sharing attributes are not allowed in clauses, and explicitly-determined
variables do not need defaults, by definition. However, the data-sharing at-
tributes for implicitly-determined variables require defaults.

The sharing attributes of a variable are strongly linked to the way in which it
is used. If a variable is shared among a thread team and a task must modify its
value, then the variable should be shared on the task construct and care must
be taken to make sure that fetches of the variable outside the task wait for the
value to be written. If the variable is read-only in the task, then the safest thing
would be to make the variable captureprivate, to make sure that it will not
be deallocated before it is used. Since we decided to not guarantee stack safety
for tasks, we faced a hard choice:

Option 1 make data primarily shared, analogous to using shared in the rest
of OpenMP. This choice is consistent with existing OpenMP. But, with this
default, the danger of data going out of scope is very high. This would put
a heavy burden on the user to ensure that all the data remains allocated
while it is used in the task. Debugging can be a nightmare for things that
are sometimes deallocated prematurely.

Option 2 make data primarily captureprivate. The biggest advantage of this
choice is that it minimizes the ”data-deallocation”’ problem. The user only
needs to worry about maintaining allocation of variables that are explic-
itly shared. The downside to using captureprivate as the default is that
Fortran parameters and C++ reference parameters will, by default, be cap-
tured by tasks. This could lead to errors when a task writes into reference
parameters.

Option 3 make some variables shared and some captureprivate. With this
choice, the rules could become very complicated, and with complicated rules
the chances for error increase. The most likely effect would be to force the
programmer to explicitly place all variables in some clause, as if there were
no defaults at all.

A Proposal for Task Parallelism in OpenMP 9

In the end, we decided to make all variables with implicitly-determined shar-
ing attributes default to captureprivate. While not perfect, this choice gives
programmers the most safety, while not being overly complex.

5 Examples of Use

In this section, we revisit examples we used in section 2, and write those appli-
cations based on our task proposal.

5.1 Pointer Chasing in Parallel

Pointer chasing (or pointer following) can be described as a segment of code
working on a list of data items linked by pointers. When there is no dependence,
the process can be executed in parallel.

We already described in Section 2 a couple of non-efficient or non-intuitive
parallelization strategies for this kernel (fig. 1 and 2). In addition, both solutions
fail if the list itself needs to be updated dynamically during the execution. In
fact, with proper synchronization, the second solution may append more items
at the end of the link, while the first one will not work at all.

All these problems go away with the new task proposal. This simple kernel
could be parallelized as shown in fig. 4.

1 #pragma omp paral lel
2 {
3 #pragma omp single
4 {
5 p = l i s t h e ad ;
6 while (p) {
7 #pragma omp task
8 p roc e s s (p)
9 p=next (p) ;

10 }
11 }
12 }

Fig. 4. Parallel pointer chasing us-
ing task

#pragma omp paral lel private (p)
{

#pragma omp for
for (int i =0; i< num l i s t s ; i++) {

p = l i s t h e ad s [i] ;
while (p) {

#pragma omp task
p roc e s s (p)

p=next (p) ;
}

}
}

Fig. 5. Parallel pointer chasing on multiple
lists using task

The task construct gives more freedom for scheduling (see the next section
for more). It is also more straightforward to add a synchronization mechanism
to work on a dynamically updated list2.

In fig. 4, the single construct ensures that only one thread will encounter
the task directive and start a task nest. It is also possible to use other OpenMP
constructs, such as sections and master, or even an if statement using thread
id, to achieve the same effect.
2 We will leave it as an exercise for readers to write the next function in the different

versions.

10 E. Ayguadé et al.

1 int f i b (int n) {
2 int x , y , sum ;
3 i f (n<2)
4 return n ;
5#pragma omp taskgroup
6 {
7#pragma omp task shared (x)
8 x=f i b (n−1);
9#pragma omp task shared (y)

10 y=f i b (n−2);
11 }
12 return x+y ;
13 }

Fig. 6. Fibonacci with recursive task

More interestingly, we may have multiple lists to be processed simultaneously
by the threads of the team, as in fig. 5. This results in better load balancing
when the number of lists does not match the number of threads, or when the
lists have very different lengths.

5.2 Recursive Task

Another scenario of using the task directive is shown in fig. 6, inspired by one of
the examples in the Cilk project [1]. This code segment calculates the Fibonacci
number. If a call to this function is encountered by a single thread in a parallel
region, a nested task region will be spawned to carry out the computation in
parallel. The TASKGROUP construct defines a code region which the encountering
thread should wait for. Both i and j are on the stack of the parent function
that invokes the new tasks. Please refer to section 3.3 for the details. Notice that
although OpenMP constructs are combined with a recursive function, it is still
equivalent to its sequential counterpart.

Other applications falling into this category include: virus shell assembly,
graphics rendering, n-body simulation, heuristic search, dense and sparse matrix
computation, friction-stir welding simulation and artificial evolution.

We can also rewrite the example in fig. 3 as in fig. 7. In this figure, we use
task to avoid the nested parallel regions. Also, we can use a flag to make the
post order processing optional.

6 Future Work

So far, we have presented a proposal to seamlessly integrate task parallelism into
the current OpenMP standard. The proposal covers the basic aspects of task
parallelism, but other areas are not covered by the current proposal and may
be subject of future work. One such possible extension is a reduction operation
performed by multiple tasks. Another is specification of dependencies between
tasks, or point-to-point synchronizations among tasks. These extensions may

A Proposal for Task Parallelism in OpenMP 11

1 void t r a v e r s e (b ina ry t r e e ∗p , bool postorder) {
2 #pragma omp task
3 i f (p−> l e f t) t r a v e r s e (p−>l e f t , postorder) ;
4 #pragma omp task
5 i f (p−>r i gh t) t r a v e r s e (p−>r ight , postorder) ;
6 i f (postorder) {
7 #pragma omp taskwait
8 }
9 p roc e s s (p) ;

10 }

Fig. 7. Parallel depth-first tree traversal

be particularly important for dealing with applications that can be expressed
through a task graph or that use pipelines.

The task proposal allows a lot of freedom for the runtime library to schedule
tasks. Several simple strategies for scheduling tasks exist but it is not clear which
will be better for the different target applications as these strategies have been
developed in the context of recursive applications. Furthermore, more complex
scheduling strategies can be developed that take into account characteristics of
the application which can be found either at compile time or run time. Another
option would be developing language changes that allow the programmer to
have greater control of the scheduling of tasks so they can implement complex
schedules (e.g. shortest job time, round robin) [8].

7 Conclusions

We have presented the work of the tasking subcommittee: a proposal to integrate
task parallelism into the OpenMP specification. This allows programmers to
parallelize program structures like while loops and recursive functions more
easily and efficiently. We have shown that, in fact, these structures are easy to
parallelize with the new proposal.

The process of defining the proposal has not been without difficult decisions, as
we tried to achieve conflicting goals: simplicity of use, simplicity of specification
and consistency with the rest of OpenMP. Our discussions identified trade-offs
between the goals, and our decisions reflected our best judgments of the relative
merits of each. We also described how some parts of the current specification
need to be changed to accommodate our proposal.

In the end, however, we feel that we have devised a balanced, flexible, and very
expressive dialect for expressing unstructured parallelism in OpenMP programs.

Acknowledgments

The authors would like to acknowledge the rest of participants in the tasking
subcommittee (Brian Bliss, Mark Bull, Eric Duncan, Roger Ferrer, Grant Haab,

12 E. Ayguadé et al.

Diana King, Kelvin Li, Xavier Martorell, Tim Mattson, Jeff Olivier, Paul Pe-
tersen, Sanjiv Shah, Raul Silvera, Xavier Teruel, Matthijs van Waveren and
Michael Wolfe) and the language committee members for their contributions to
this tasking proposal. The Nanos group at BSC-UPC is supported has been sup-
ported by the Ministry of Education of Spain under contract TIN2007-60625,
and the European Commission in the context of the SARC integrated project
#27648 (FP6).

References

1. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multi-
threaded language. In: PLDI 1998. Proceedings of the ACM SIGPLAN 1998 con-
ference on Programming language design and implementation, pp. 212–223. ACM
Press, New York (1998)

2. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible control structures for paral-
lellism in OpenMP. In: 1st European Workshop on OpenMP (September 1999)

3. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
Mercurium: A Research Compiler for OpenMP. In: 6th European Workshop on
OpenMP (EWOMP 2004), September 2004, pp. 103–109 (2004)

4. OpenMP Architecture Review Board. OpenMP Application Program Interface
(May 2005)

5. Massaioli, F., Castiglione, F., Bernaschi, M.: OpenMP parallelization of agent-
based models. Parallel Computing 31(10-12), 1066–1081 (2005)

6. Blikberg, R., Sørevik, T.: Load balancing and OpenMP implementation of nested
parallelism. Parallel Computing 31(10-12), 984–998 (2005)

7. Salvini, S.: Unlocking the Power of OpenMP. In: 5th European Workshop on
OpenMP (EWOMP 2003) (September 2003)

8. Van Zee, F.G., Bientinesi, P., Low, T.M., van de Geijn, R.A.: Scalable Paral-
lelization of FLAME Code via the Workqueuing Model. ACM Trans. Math. Soft.
(submitted, 2006)

9. Kurzak, J., Dongarra, J.: Implementing Linear Algebra Routines on Multi-Core
Processors with Pipelining and a Look Ahead. LAPACK Working Note 178, Dept.
of Computer Science, University of Tennessee (September 2006)

10. The X10 Design Team. Report on the Experimental Language X10. Technical
report, IBM (February 2006)

11. Callahan, D., Chamberlain, B.L., Zima, H.P.: The Cascade High Productivity Lan-
guage. In: 9th Int. Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS 2004), pp. 52–60. IEEE Computer Society, Los
Alamitos (2004)

12. Gonzalez, M., Ayguadé, E., Martorell, X., Labarta, J.: Exploiting pipelined execu-
tions in OpenMP. In: 32nd Annual International Conference on Parallel Processing
(ICPP 2003) (October 2003)

13. Bull, J.M., Ball, C.: Point-to-Point Synchronisation on Shared Memory Architec-
tures. In: 5th European Workshop on OpenMP (EWOMP 2003) (September 2003)

Support for Fine Grained Dependent Tasks in OpenMP

Oliver Sinnen, Jsun Pe, and Alexei Vladimirovich Kozlov

Department of Electrical and Computer Engineering
University of Auckland

Private Bag 92019
Auckland, New Zealand

o.sinnen@auckland.ac.nz

Abstract. OpenMP is widely used for shared memory parallel programming
and is especially useful for the parallelisation of loops. When it comes to task
parallelism, however, OpenMP is less powerful and the sections construct
lacks support for dependences and fine grained tasks. This paper proposes a new
work-sharing construct, tasks, which is a generalisation of sections. It goes
beyond sections by allowing unbalanced and finer grained tasks with arbi-
trary dependence structure. A proof-of-concept compiler has been implemented
for the new directives, which includes a state-of-the-art scheduling algorithm for
task graphs. Experiments with a large set of programs were conducted using the
new directives. The results demonstrate that the new approach can efficiently ex-
ploit the task parallelism inherent in the code, without introducing any additional
overhead.

1 Introduction

For shared memory parallel programming with the languages Fortran and C/C++,
OpenMP has long been a de facto standard [1]. Augmenting the Fortran or C/C++
source code with OpenMP’s work-sharing constructs is very powerful for the paral-
lelisation of iterative computations, i.e. loops. For task parallelism, OpenMP offers the
sections construct, which allows to define independent sections that can be executed
concurrently. The underlying notion is that each section will be executed by a different
thread.

This implies that each section of the sections construct is rather large. Further,
to achieve a good load balance, and hence to use the processors efficiently, the com-
putational load of each section must be similar. But most importantly, there can be
no dependences between the sections, or the programmer must synchronise the corre-
sponding parts manually with the usual mechanisms.

This paper proposes an extension to OpenMP and presents a proof-of-concept
implementation that allows to easily parallelise fine grained tasks with arbitrary de-
pendence structure. Analogue to the sections-section construct, the new di-
rectives are designated tasks-task and can be considered a generalisation of the
sections-section concept. The task blocks of a tasks construct need not
to have balanced load. Our proof-of-concept source-to-source compiler schedules the
task blocks automatically with a state-of-the-art task scheduling algorithms. Like all

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 13–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 O. Sinnen, J. Pe, and A.V. Kozlov

OpenMP directives, the new tasks-task directives maintain the sequential seman-
tic of the program. The approach addresses a different type of parallelism than the
taskq-task work-queueing concept [8], as implemented in the Intel OpenMP com-
piler [11]. Having said this, it is conceivable that the two concepts can later be unified.

Experimental results demonstrate that this approach can exploit the inherent paral-
lelism of the code. It also shows that there is no additional overhead in comparisons to
the sections-section directives.

The rest of this paper is organised as follows. Section 2 introduces the syntax and
semantics of the new tasks-task directives. The structure and implementation of
the proof-of-concept compiler are discussed in Section 3. An experimental evaluation
of the new approach is given in Section 4 and the paper concludes in Section 5.

2 New tasks-task Directives

This section proposes a new work-sharing construct tasks for OpenMP. In essence,
it is a generalisation of the existing sections construct [1], but is more powerful in
three aspects: i) it allows the parallelisation of partially dependent tasks; ii) it is more
scalable; and iii) it enables more efficient scheduling. The tasks directive identifies a
non-iterative work-sharing construct. It has the following syntax:

#pragma omp tasks [clause[[,]clause...]
structured-block

where clause can be any of the following, which are almost identical to the
clauses permitted by the sections construct:

private(variable-list)
firstprivate(variable-list)
lastprivate(variable-list)
reduction(operator; variable-list)

The combined parallel tasks construct is defined as for the sections
construct. A tasks directive encloses one or more task directives. Each task
directive encloses a structured block of code that has to be executed in sequential, i.e.
by a single thread. Different task blocks, however, can be executed in parallel, if their
dependences permit. More on the dependences later, let us first look at the syntax of
the task:

#pragma omp task name weight [dependsOn(list-of-tasks)]
structured-block

In contrast to a section, there are three additional elements:

1. name: An identifier of this task, e.g. A or job1.
2. weight: An integer value that describes the relative computational weight of the

task. As an example consider two tasks A and B with a weight value of 1 and

Support for Fine Grained Dependent Tasks in OpenMP 15

5, respectively. This means that B’s estimated execution time is five times longer
than that of A.

3. dependsOn: The list-of-tasks, which are argument to the dependsOn
key word, enumerate the task blocks on which this task depends on. For exam-
ple, dependsOn(A,C) means that this task depends on the tasks A and C. If
the dependsOn keyword is omitted or the list-of-tasks is empty, the task
is independent of any other task within the enclosing tasks construct.

The task directive must only appear within the lexical extent of the tasks direc-
tive. Through the utilisation of the dependsOn statement, a partial order between the
task blocks of a tasks construct can be established. The execution order that is es-
tablished by the OpenMP complier must adhere to precedence constraints established
by the dependsOn statements. For the tasks construct, the dependsOn statements
substitute and generalise the ordered clause of OpenMP that can be employed with
other work-sharing constructs.

Note that the list-of-tasks can only contain task identifiers of lexically pre-
ceeding task blocks – forward references are not allowed. This makes dependence cy-
cles impossible as it enforces a precedence order of the task blocks. More importantly,
it also enforces the usual sequential semantics of OpenMP constructs. Hence, the aug-
mented code retains its sequential semantic. Figure 1 depicts on the left a simple tasks
construct. The code blocks of the task directives are symbolised by Block Code x
comments.

To see the advantage and the power of the tasks-task directives, let us first
look back at the semantic of the sections-section directives. In a sections
construct, each section is usually associated with at thread. During execution, that
commonly means that each section is executed by a different thread. Hence, the pro-
grammer needs to manually balance the computational load of the section blocks.
Furthermore, code parts that require a certain execution order must be put into the same
section or manually synchronised.

In contrast, the semantic of the tasks-task construct has no such association with
threads. The programmer should try to define many task blocks – many more than the
maximum number of threads that will be available during execution. During compila-
tion, or even at runtime, the task blocks are grouped and ordered for execution. This
scheduling takes into account the computational load of the task blocks (as specified
with the weight argument), their precedence constraints and the number of threads.
Hence, the schedule can be optimised for the number of available processors.

The new constructs are very appropriate for the parallelisation of existing code that
features some task parallelism. The programmer defines task blocks and estimates the
execution time of each block in the weight value. When a certain block or function
must be completed before another one, the programmer simply needs to indicate this in
a dependsOn statement. There is no need for reorganising the code structure due to
dependences. Note, that the programmer has to analyse the dependences between code
parts for any type of parallelisation, there is no additional burden inflicted by the new
directives.

16 O. Sinnen, J. Pe, and A.V. Kozlov

3 Compiler Implementation

A proof-of-concept OpenMP compiler was implemented for the new tasks-task
directives. In order to avoid the construction of a fully featured compiler in this project,
a source-to-source approach was chosen. The developed compiler’s input is a source file
with extended OpenMP directives. During its execution, the compiler converts the new
tasks-task directives into standard OpenMP work-sharing constructs. The output
source file can then be compiled with a conventional OpenMP compiler.

The complier architecture can be divided into three parts:

1. Parser (front-end) – parses the source code and constructs a task graph
2. Scheduler (middle-end) – schedules the task graph to a number of processors
3. Code generator (back-end) – creates code from the schedule and the original code

It was implemented for the Java programming language. While there is no official
Java language binding for the OpenMP specification, a source-to-source Java complier
for OpenMP-like directives exists, called JOMP [2,5]. The employed syntax for the
OpenMP directives is almost identical to that of the C/C++ language binding, with
the notable difference that directives are comments in the Java syntax and not prag-
mas. Hence, a directive is initiated with \\omp instead of the #pragma omp used in
C/C++.

3.1 Parser

For the chosen approach of a source-to-source compiler, the parser can be quite simple.
The main job of the parser front-end is to parse the new directives and to construct a
task graph for each tasks work-sharing construct.

Graphs are widely used in parallel computing as an abstraction of a program [9]. For
scheduling, a program P (or parts of it) is represented by the directed acyclic graph
G = (V,E, w), called task graph, where V is the set of nodes representing the tasks
of P and E is the set of edges representing the dependences between the tasks. An
edge eij ∈ E represents the communication from node ni to node nj , ni, nj ∈ V. The
positive weight w(n) of node n ∈ V represents its computation cost.

In order to generate such a task graph, the parser needs to localise the task blocks in
each tasks construct. A task graph is created for each tasks construct, consisting of
one node n for each of its task blocks. The code enclosed in the task block is associ-
ated with the node n. Each n is given the parsed identifier of the task block and w(n)
is sent to the corresponding parsed weight. Edges are created from the the dependsOn
statements. One edge e is created for each task identifier x in a dependsOn statement:
e is directed from the node of x to the node of the dependsOn statement.

Figure 1 depicts this parsing procedure for a simple tasks construct. The code
blocks of the task directives are symbolised by Block Code x comments. As can
be seen, nodes A-G are created for the seven task blocks. The nodes are identified with
the name element of the corresponding blocks and have their corresponding weight.
For example, the first task block corresponds to node A with weight w(A) = 2.
As described above, the edges are inserted into the graph based on the dependsOn
statements. For example, there are three dependsOn statements containing A, thus
there are three edges eAB, eAC , eAD directed from A to the corresponding target nodes.

Support for Fine Grained Dependent Tasks in OpenMP 17

Fig. 1. Constructing a task graph from tasks-task directives

3.2 Scheduler

The middle-end of the compiler deals with the scheduling of the task blocks. Strictly
speaking, this scheduling can be performed later during program execution, imple-
mented in a runtime library. For our proof-of-concept complier, it is performed during
compilation for simplicity. An advantage of this approach is that the scheduling costs
are paid only once during compilation time.

With the construction of the task graph, the code part to be parallelised (i.e. the
tasks construct) has been divided into subtasks and their dependences have been es-
tablished. An additional information necessary to perform the scheduling is the number
of processors (or threads). In this implementation, the number is passed to the compiler
as an argument. For a runtime implementation, the scheduling can be performed for the
automatically detected number of available threads.

Simple dynamic schemes, like a central work-queue, cannot be employed for
scheduling due to the dependences between the tasks. Scheduling of task graphs is a
difficult problem – in fact it is NP-hard [3] – and many heuristic algorithms have been
proposed [9]. An essential aspect of scheduling is the underlying model of the target
parallel system. In this proof-of-concept compiler, a classical task scheduling model
that does not consider communication costs is employed [9]. The implications of this
are discussed later. The following assumptions are made about the target system: i) the
system is dedicated, i.e. no other program is executed at the same time; ii) tasks are
non-preemptive; iii) communication is cost free. Figure 2 depicts a schedule for the
task graph of Figure 1 on two processors under this model. For example, node B can
only start on P2 after A has finished on P1 due to the dependence expressed through
the edge eAB. Note that B starts immediately after A, since the utilised model does not
assume any communication costs.

18 O. Sinnen, J. Pe, and A.V. Kozlov

Fig. 2. Scheduling of the task graph

Using this model, a simple, low complexity and generally good scheduling heuristic
[4], called list scheduling was selected and implemented. In its simplest form, the first
part of list scheduling sorts the nodes V of the task graph G = (V,E, w) according
to a priority scheme, while respecting the precedence constraints of the nodes. In the
second part, each node of the list is successively scheduled to a processor P chosen for
the node. Usually, the chosen processor P is the one of all processors P that allows the
earliest start time of the node. Algorithm 1 outlines this list scheduling procedure.

Algorithm 1. Simple list scheduling
� 1. Part:
Sort nodes n ∈ V into list L, according to priority scheme and precedence constraints.
� 2. Part:
for each n ∈ L do

Choose processor P ∈ P for n that allows earliest start time.
Schedule n on P .

end for

As was shown in many experiments, e.g. [7], the lengths of the schedules produced
by list scheduling are strongly influenced by the order in which the nodes are processed,
hence by the priority scheme. Sorting the nodes in decreasing (computation) bottom
level order is simple and gives usually good results [9]. The computation bottom level
blw(n) of a node n is the length of the longest path starting with n, where the length of
a path is here defined as the sum of all of its node weights. Recursively, this is

blw(ni) = w(ni) + max
nj∈succ(ni)

{blw(nj)}, (1)

where succ(ni) is the set of successor (child) nodes of nj .

Support for Fine Grained Dependent Tasks in OpenMP 19

List scheduling using bottom level node order is usually fast as it is straight forward
to implement and has near linear complexity O(|V|(|P| + log |V|) + |P||E|) [9]. In
any case, the number of nodes (i.e. task blocks) should rarely be high in a tasks
construct, hence the complexity should never be important. For that reason, more so-
phisticated algorithms might be used in the future, in particular algorithms that obtain
an optimal solution [10].

3.3 Code Generation

In the last step of the compilation, the code is generated according to the schedule. As
this is a source-to-source compiler, the generated code is composed of the original code
in the task blocks and standard OpenMP directives.

The simple solution is to use the sections construct of standard OpenMP. Each
tasks construct translates to one sections construct. Within the sections con-
struct, one section block is created for each processor P of the schedule. This fol-
lows the semantic of sections in that each section will be executed by a different
thread. The body of the section block in turn contains the code of the task blocks
corresponding to the nodes scheduled on the processor P . This code is arranged in the
start time order of the nodes on P in the schedule.

Following this procedure, the code for the example of Figures 1 and 2 looks like this:

//omp parallel sections
{

//omp section
{
Block Code A
Block Code D
Block Code C
Block Code E
Block Code G

}
//omp section
{
Block Code B

Block Code F
}

}

Synchronisation. While this code accurately represents the mapping and the order of
the nodes in the schedule, it does not completely adhere to the precedence constraints
established by the edges of the task graph. For example, code block B should not start
execution before A has finished (due to edge eAB). However, since they are executed in
different section blocks, i.e. threads, there is no guarantee for the correct execution
order. Note that the precedence order between code blocks in the same section is
imposed through the lexical order of the code.

To adhere to the precedence constraints of code blocks in different section con-
structs, a synchronisation mechanism is necessary. The simple solution proposed in

20 O. Sinnen, J. Pe, and A.V. Kozlov

this paper is a boolean variable for each block, which indicates its completion. Ini-
tialised with false, the variable is set to true immediately after the block has fin-
ished. The dependent code block delays its execution until the variable becomes true.
Of course, this has only to be done for those code blocks on which other blocks of
different section constructs depend on.

The delay of dependent code blocks is implemented as an active wait with a loop
spinning on the synchronisation variable. This is faster than suspending the thread, but
can easily be changed to another mechanism, for example when it is desired to have
idle waits in order to save energy.

Figure 3 displays the resulting code that is generated for the schedule of Figure 1.
This is the same code as shown above, augmented with the necessary synchronisa-
tion variables. An example: as soon as code block B finishes is sets the correspond-
ing variable taskBDone to true. The code blocks depending on B, i.e. E and G
(see Figure 1), are delayed with while{!taskBDone){} until taskBDone be-
comes true. Strictly, the while{!taskBDone){} before code block G is not neces-
sary, but it simplifies the code generation. It will be easy to improve the code generation
to remove such redundant waits in the future.

The resulting output code of the source-to-source complier only uses standard
OpenMP directives and thus can be compiled with and standard OpenMP compiler. For
the proof-of-concept implementation this was JOMP, the Java compiler for OpenMP-
like directives [2,5].

Fig. 3. Code generation from schedule

Support for Fine Grained Dependent Tasks in OpenMP 21

4 Practical Evaluation and Performance

Experiments have been conducted in order to evaluate the performance of the new
tasks-task approach and the proof-of-concept complier. From the area of task
scheduling the typical behaviour for different kinds of task graphs is well known, e.g.
[6]. So the question that arises is whether the tasks-task approach and the complier
implementation behave as predicted by those results. Further, one wants to evaluate the
overhead that might be introduced with the new approach and its implementation.

4.1 Workload

For the workload of the experiments a large number of small programs was generated.
Each program essentially consists of one tasks construct. Three parameters are varied
for the construction of its code body:

1. Size/Number of task blocks – the tasks constructs contains 5, 6, 7, 10 or 20
task blocks.

2. Density – the density is defined as the average number of dependences per task
block. In terms of the corresponding task graph G, this is the number of edges
divided by the number of nodes, |E|/|V|. There are five steps of density, taken
from the range 0 to 4.95 for 20 task blocks, and 0 to ca. 2 for all other sizes.

3. Variance of the distribution of the weight values of the task blocks – The mean
weight value is set to 1000 and there are three level of variance – low, medium
and high – corresponding to a standard deviation of approximately 200, 500, 800
respectively.

About 60 different programs were generated by varying these three parameters. The
actual code of a task block consisted of a small iterative kernel. To achieve a execution
time of each task block that corresponds to its weight value, the number of iterations
of the kernel was set accordingly.

In comparison to experimental evaluations of task scheduling algorithms, e.g. [6],
the number of tasks is low. However, for the typical use case where a program part
with task parallelism is parallelised manually, this number seems realistic. In contrast,
the density is rather on the high side, but both choices will show the power of the
proposed approach. Note that more task blocks and lower density are generally easier
to parallelise.

4.2 Experimental Environment

The workload programs were compiled and executed on a Sun Fire v880, which is
a centralised shared memory system with 8 processors. For the compilation the pro-
grams went through our source-to-source compiler, then JOMP and finally the Sun Java
compiler. Each program was compiled and executed with 1-8 threads. To reduce mea-
surement noise, each program was executed 10 times for each number of threads and
the average value was recorded.

22 O. Sinnen, J. Pe, and A.V. Kozlov

4.3 Results

In the following the major results are presented and discussed.
Figure 4 displays a chart of the speedup over the number of threads for programs with

different sizes, i.e. number of task blocks. The density is fixed to 1 and the weight
distribution variance is medium.

Fig. 4. Speedup over number of threads for programs of different sizes, density 1 and medium
weight variance

All programs show the same qualitative behaviour: the speedup increases more or
less linearly with the number of threads until a saturation point is reached. After this
point, the speedup remains the same, even if more threads are used for the execution.
Further, the speedup curve saturates later the more task blocks are in the program.
For example, the program with 20 task blocks saturates with 5 threads, whereas the
program with 10 task blocks saturates with 3 threads.

This is exactly the expected behaviour of such programs. The inherent concurrency is
limited by the number of task blocks, but also by the dependences between them. With
this in mind, very good speedups are achieved. For programs with more task blocks and
similar dependence structure higher speedups can be expected.

Also interesting to observe is that after the saturation point the speedup remains
stable and does not decrease. This is very desirable and demonstrates that no overhead
is introduced for additional threads even if they cannot be employed efficiently. The
scheduling algorithm achieves this automatically, because it leaves processors empty
when their utilisation would decrease the performance. In turn the code generation does
not create a section region for empty processors of the schedule, hence unnecessary
threads are not involved in the execution of a sections construct.

Figure 5 displays a chart of the speedup over the number of threads for programs
with different densities, number of dependences. The size is fixed to 20 task blocks
and the weight distribution variance is medium.

For most programs the behaviour is similar as in Figure 4: the speedup increases
linearly until a certain saturation point and then stays level. Also, for most programs it
holds that the higher the density, the lower the speedup.

Support for Fine Grained Dependent Tasks in OpenMP 23

Fig. 5. Speedup over number of threads for programs of different densities, size 20 and medium
variance

Two points are different though. First, the saturation point of the program with a den-
sity of 0.5 is with 6 threads higher than all saturation points in Figure 4. This makes per-
fect sense, as the density (0.5) is lower than the density (1) of the programs in Figure 4.
In other words, the program has better inherent concurrency and can therefore be par-
allelised more efficiently. This demonstrates the general scalability of our approach.

Second, while the performance of the programs decreases with the increase of the
density, there is one exception. The program with the highest density (4.95) has no
saturation point and reaches for 8 threads almost the same speedup as the program with
the lowest density (0.5). The reason lies in the dependence structure of the programs.
Most have a pseudo-randomly created structure, but the program with density 4.95 is a
highly regular program with two layers of nodes in the task graph. Nodes in the same
layer are independent of each other, which implies a high inherent concurrency, hence
it enables better scalability.

In summary, the experiments clearly demonstrated the successful parallelisation of
the tasks constructs. The achieved scalability corresponds to the inherent parallelism
of the programs and is in concordance with previous task scheduling results. Further-
more, the introduced overhead is low and does not jeopardise the performance gain for
higher numbers of threads.

5 Conclusions

This paper presented an extension to OpenMP that allows the efficient parallelisation
of fine grained tasks with an arbitrary dependence structure. The new tasks-task
directives are easy to employ and generalise the sections-section concept.
Parallelising a program with these constructs maintains the sequential semantic and
integrates smoothly into the normal parallelisation process. A proof-of-concept source-
to-source complier was developed and the approach was evaluated in experiments. The
results show that the new directives are capable of exploiting the inherent task paral-
lelism in the code without introducing any additional overhead.

24 O. Sinnen, J. Pe, and A.V. Kozlov

In the future, the new directives and compiler can be enhanced in several ways.
Scheduling can be performed during runtime, making the approach even more flexible
and adaptable. Communication costs should be integrated into the tasks construct to
permit their consideration in scheduling. It is also desirable to unify the new construct
with the taskq-task work-queueing concept [8]. Further, we are currently working
on a plug-in for the Eclipse IDE that visualises the graph of the tasks construct and
allows its easy modification.

References

1. OpenMP Application Program Interface, http://www.openmp.org/specs/
2. Bull, J.M., Westhead, M.D., Kambites, M.E., Obdržálek, J.: Towards OpenMP for Java. In:

Proc. of 2nd European Workshop on OpenMP, Edinburgh, UK, September 2000, pp. 98–105
(2000)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman (1979)

4. Hu, T.: Parallel sequencing and assembly line problems. Operations Research 9(6), 841–848
(1961)

5. Kambites, M.E., Obdržálek, J., Bull, J.M.: An OpenMP-like interface for parallel program-
ming in Java. Concurrency and Computation: Practice and Experience 13(8-9), 793–814
(2001)

6. Kwok, Y.-K., Ahmad, I.: Benchmarking the task graph scheduling algorithms. In: Proc. of
Int. Par. Processing Symposium/Symposium on Par. and Distributed Processing (IPPS/SPDP
1998), Orlando, Florida, USA, April 1998, pp. 531–537 (1998)

7. Kwok, Y.-K., Ahmad, I.: A comparison of parallel search-based algorithms for multipro-
cessors scheduling. In: Proc. of the 2nd European Conference on Parallel and Distributed
Systems (EUROPDS 1998), Vienna, Austria (July 1998)

8. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible control structures for parallelism in
OpenMP. Concurrency: Practice and Experience 12(12), 1219–1239 (2000); Special Issue:
EWOMP 1999 - First European Workshop on OpenMP

9. Sinnen, O.: Task Scheduling for Parallel Systems. Wiley, Chichester (2007)
10. Sinnen, O., Kozlov, A.V., Semar Shahul, A.Z.: Optimal scheduling of task graphs on parallel

systems. In: Proc. Int. Conference on Parallel and Distributed Computing and Networks,
Innsbruck, Austria (February 2007)

11. Su, E., Tian, X., Girkar, M., Haab, G., Shah, S., Petersen, P.: Compiler support for workqueu-
ing execution model for Intel SMP architectures. In: Proc. of European Workshop on
OpenMP (EWOMP) (September 2002)

http://www.openmp.org/specs/

Performance Evaluation of a Multi-zone

Application in Different OpenMP Approaches

Haoqiang Jin1, Barbara Chapman2, and Lei Huang2

1 NAS Division, NASA Ames Research Center,
Moffett Field, CA 94035-1000

hjin@nas.nasa.gov
2 Department of Computer Science, University of Houston,

Houston, TX 77004
{chapman,leihuang}@cs.uh.edu

Abstract. We describe a performance study of a multi-zone applica-
tion benchmark implemented in several OpenMP approaches that exploit
multi-level parallelism and deal with unbalanced workload. The multi-
zone application was derived from the well-known NAS Parallel Bench-
marks (NPB) suite that involves flow solvers on collections of loosely
coupled discretization meshes. Parallel versions of this application have
been developed using the Subteam concept and Workqueuing model as
extensions to the current OpenMP. We examine the performance impact
of these extensions to OpenMP on a large shared memory machine and
compare with hybrid and nested OpenMP programming models.

1 Introduction

Since its introduction in 1997, OpenMP has become the de facto standard for
shared memory parallel programming. The notable advantages of the model are
its global view of memory space that simplifies programming development and
its incremental approach toward parallelization. However, it is a big challenge to
scale OpenMP codes to tens or hundreds of processors. One of the difficulties is a
result of limited parallelism that can be exploited on a single level of loop nest.
Although the current standard [8] allows one to use nested OpenMP parallel
regions, the performance is not very satisfactory. One of the known issues with
nested OpenMP is its lack of support for thread team reuse at the nesting level,
which affects the overall application performance and will be more profound
on multi-core, multi-chip architectures. There is no guarantee that the same OS
threads will be used at each invocation of parallel regions although many OS and
compilers have provided support for thread affinity at a single level. To remedy
this deficiency, the NANOS compiler team [1] has introduced the GROUPS clause
to the outer parallel region to specify a thread group composition prior to the
start of nested parallel regions, and Zhang [13] proposed extensions for thread
mapping and grouping.

Chapman and collaborators [5] proposed the Subteam concept to improve
work distribution by introducing subteams of threads within a single level of

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 25–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 H. Jin, B. Chapman, and L. Huang

thread team, as an alternative for nested OpenMP. Conceptually, a subteam is
similar to a process subgroup in the MPI context. The user has control over how
threads are subdivided in order to suit application needs. The subteam proposal
introduced an onthreads clause to a work-sharing directive so that the work
will be performed among the subset of threads, including the implicit barrier at
the end of the construct.

One of the prominent extensions to the current OpenMP is the Workqueuing
(or Taskq) model first introduced by Shah et al. [9] and implemented in the
Intel C++ compiler [10]. It was designed to work with recursive algorithms
and cases where work units can only be determined dynamically. Because of its
dynamic nature, Taskq can also be used effectively in an unbalanced workload
environment. The Taskq model will be included in the coming OpenMP 3.0
release [4]. Although the final tasking directive in OpenMP 3.0 might not be
the same as the original Intel Taskq proposal, it should still be quite intuitive to
understand what potential the more dynamic approach can offer to applications.

In this study, we will compare different OpenMP approaches for the par-
allelization of a multi-zone application benchmark on a large shared memory
machine. In section 2, we briefly discuss the application under consideration.
The different implementations of our benchmark code are described in section 3
and the machine description and performance results are presented in section 4.
We conclude our study in section 5 where we also elaborate on future work.

2 Multi-zone Application Benchmark

The multi-zone application benchmarks were developed [6,11] as an extension
to the original NAS Parallel Benchmarks (NPBs) [2]. These benchmarks involve
solving the application benchmarks BT, SP, and LU on collections of loosely cou-
pled discretization meshes (or zones). The solutions on the meshes are updated
independently, but after each time step they exchange boundary value informa-
tion. This strategy, which is common among many production structured-mesh
flow solver codes, provides relatively easy to exploit coarse-grain parallelism
between zones. Since the individual application benchmark also allows fine-
grain parallelism within each zone, this NPB extension, named NPB Multi-Zone
(NPB-MZ), is a good candidate for testing hybrid and multi-level parallelization
tools and strategies.

NPB-MZ contains three application benchmarks: BT-MZ, SP-MZ, and
LU-MZ, with problem sizes defined from Class S to Class F. The difference
between classes comes from how the number of zones and the size of each zone
are defined in each benchmark. We focus our study on the BT-MZ benchmark
because it was designed to have uneven-sized zones, which allows us to test
various load balancing strategies. For example, the Class B problem has 64
zones with sizes ranging from 3K to 60K mesh points. Previously, the hybrid
MPI+OpenMP [6] and nested OpenMP [1] programming models have been used
to exploit parallelism in NPB-MZ beyond a single level. These approaches will
be briefly described in the next section.

Performance Evaluation of a Multi-zone Application 27

3 Benchmark Implementations

In this section, we describe five approaches of using OpenMP or its extension to
implement the multi-zone BT-MZ benchmark. Three of the approaches exploit
multi-level parallelism and the other two are concerned with balancing workload
dynamically.

3.1 Hybrid MPI+OpenMP

The hybrid MPI+OpenMP implementation exploits two levels of parallelism in
the multi-zone benchmark in which OpenMP is applied for fine grained intra-
zone parallelization and MPI is used for coarse grained inter-zone parallelization.
Load balancing in BT-MZ is based on a bin-packing algorithm with an addi-
tional adjustment from OpenMP threads [6]. In this strategy, multiple zones are
clustered into zone groups among which the computational workload is evenly
distributed. Each zone group is then assigned to an MPI process for paral-
lel execution. This process involves sorting zones by size in descending order
and bin-packing into zone groups. Exchanging boundary data within each time
step requires MPI many-to-many communication. The hybrid version is fully
described in Ref. [6] and is part of the standard NPB distribution. We will use
the hybrid version as the baseline for comparison with other OpenMP imple-
mentations.

3.2 Nested OpenMP

The nested OpenMP implementation is based on the two-level approach of the
hybrid version except that OpenMP is used for both levels of parallelism. The
inner level parallelization for loop parallelism within each zone is essentially the
same as that of the hybrid version. The only addition is the “num_threads”
clause to each inner parallel region to specify the number of threads. The first
(outer) level OpenMP exploits coarse-grained parallelism between zones.

A sketch of the iteration loop using the nested OpenMP code is illustrated in
Fig. 1. The outer level parallelization is adopted from the MPI approach: work-
loads from zones are explicitly distributed among the outer-level threads. The
difference is that OpenMP now works on the shared data space as opposed to
private data in the MPI version. The load balancing is done statically through
the same bin-packing algorithm where zones are first sorted by size, then as-
signed to the least loaded thread one by one. The routine “map_zones” returns
the number and list of zones (num_proc_zones and proc_zone_id) assigned
to a given thread (myid) as well as the number of threads (nthreads) for the
inner parallel regions. This information is then passed to the “num_threads”
clause in the solver routines. The MPI communication calls inside “exch_qbc”
for boundary data exchange are replaced with direct data copy and proper bar-
rier synchronization.

In order to reduce the fork-and-join overhead associated with the inner-level
parallel regions, a variant was also created: a single parallel construct is applied to

28 H. Jin, B. Chapman, and L. Huang

the time step loop block and all inner-parallel regions are replaced with orphaned
“omp do” constructs. This version, namely, version 2, will be discussed together
with the first version in the results section.

!$omp parallel private(myid,...)

myid = omp_get_thread_num()

call map zones(myid,..,nthreads,&
& num proc zones,proc zone id)

do step=1,niter

call exch_qbc(u,...,nthreads)

do iz = 1, num_proc_zones

zone = proc_zone_id(iz)

call adi(u(zone),..,nthreads)

end do

end do

!$omp end parallel

subroutine adi(u,..,nthreads)

!$omp parallel do &

!$omp& num threads(nthreads)
do k=2,nz-1

solve for u in the current zone

end do

!$omp parallel private(myid,...)

myid = omp_get_thread_num()

call map zones(myid,..,mytid,&
& proc thread team)

t1 = proc_thread_team(1,mytid)

t2 = proc_thread_team(2,mytid)

do step=1,niter

call exch_qbc(u,...,t1,t2)

do iz = 1, num_proc_zones

zone = proc_zone_id(iz)

call adi(u(zone),..,t1,t2)

end do

end do

!$omp end parallel

subroutine adi(u,..,t1,t2)

!$omp do onthreads(t1:t2:1)
do k=2,nz-1

solve for u in the current zone

end do

Fig. 1. Sample nested OpenMP code on the left and Subteam code on the right

3.3 Subteam in OpenMP

The subteam version was derived from the nested OpenMP version. Changes
include replacing the inner level parallel regions with orphaned “omp do” con-
structs and adding the “onthreads” clause to specify the subteam composition.
The sample subteam code is listed in the right panel of Fig. 1. The main difference
is in the call to “map_zones.” This routine determines which subteam (mytid)
the current thread belongs to and what members are in the current subteam
(proc_thread_team). This process could be simplified by introducing a runtime
function for subteam formation and management, which is not included in the
subteam proposal [5].

The same load-balancing scheme as described in previous sections is applied
in the subteam version to create zone groups. Each subteam works on one zone
group, and thus, the number of zone groups equals the number of subteams.
We use an environment variable to specify the number of subteams at runtime.
Threads assigned to each subteam will work on loop-level parallelism within each
zone. There is no overlapping of thread ids among different subteams. Similar
to the nested OpenMP version, the routine “exch_qbc” uses direct array copy
and proper global barrier synchronization for boundary communication.

Performance Evaluation of a Multi-zone Application 29

3.4 OpenMP at Outer Level

One of the advantages of OpenMP is its ability to handle unbalanced workload
in a dynamic fashion without much user intervention. The programming effort is
much less than the explicit approach described in previous sections for handling
load balance. The tradeoff is potentially higher overhead associated with dynamic
scheduling and less thread-data affinity as would be achieved in a static approach.
To examine the potential performance tradeoff, we developed an OpenMP version
that solely focuses on the coarse-grained parallelization of different zones of the
multi-zone benchmark. As illustrated in Fig. 2 left panel, this version is much sim-
pler and compact. The “omp do” directive is applied to the loop nest over multiple
zones. There is no explicit coding for load balancing, which is achieved through
the OpenMP dynamic runtime schedule. The use of the “schedule(runtime)”
clause allows us to compare different OpenMP loop schedules. A “zone_sort_id”
array is used to store zone ids in different sorting schemes.

!$omp parallel private(zone,...)

do step=1,niter

call exch_qbc(u,...)

!$omp do schedule(runtime)
do iz = 1, num_zones

zone = zone_sort_id(iz)

call adi(u(zone),...)

end do

end do

!$omp end parallel

#pragma omp parallel private(zone)

for (step=1;step<=niter;step++) {

exch_qbc(u,...);

#pragma intel omp taskq
for (iz=0;iz<num_zones;iz++) {

zone = zone_sort_id[iz];

#pragma intel omp task \

captureprivate(zone)
adi(&u[zone],...);

}}

Fig. 2. Code segment using OpenMP runtime scheduling (left) and Intel taskq direc-
tives (right)

3.5 Workqueuing Model

We developed a Taskq version of the BT-MZ benchmark based on the Intel
workqueuing model. Because Intel implemented Taskq only in its C++ com-
piler for C/C++ applications and there is no other vendor compiler available
for testing the concept, we had to first convert the Fortran implementation of
BT-MZ to the C counterpart. To minimize the performance impact from such a
conversion, we did the following:

• Fortran multi-dimensional arrays are converted to linearized C arrays,
such as

u(m,i,j,k) -> u[m+5*(i+nxmax*(j+ny*k))],

• The restrict qualifier is added to pointer variables in subroutine argument
to enable compiler to perform optimization without pre-assumed pointer
aliasing, for example

void add(double *restrict u, double *restrict rhs,..).

30 H. Jin, B. Chapman, and L. Huang

Once we had the C version, the Taskq implementation of the BT-MZ bench-
mark (Fig. 2 right panel) is straightforward. Each work unit for a task is defined
by the solver on an individual zone. The “intel omp taskq” directive is added
to the loop nest over zones. Inside the zone loop nest, the “intel omp task”
directive is used to generate tasks for each loop iteration and the zone value
is preserved for each task by the “captureprivate” clause. The implicit syn-
chronization at the end of the taskq construct guarantees the completion of all
tasks before going to the next iteration. Again, to test the performance impact
of workload ordering, we use “zone_sort_id” to store the sorted zone ids.

4 Performance Results

In this section, we present performance results obtained on a large shared mem-
ory system. We will first give a brief description of the system and programming
support.

4.1 Testing Environment

For our study, we used an SGI Altix 3700BX2 system that is one of the 20
nodes in the Columbia supercomputer installed at NASA Ames Research Cen-
ter [3]. The Altix BX2 node has 512 Intel Itanium 2 processors, each clocked at
1.6 GHz and containing 9 MB on-chip L3 data cache. Approximately 1 TB of
global shared-access memory is provided through the SGI scalable non-uniform
memory access flexible (NUMAflex) architecture. The underlying NUMAlink4
interconnect provides 6.4 GB/s bandwidth and scales linearly with the number of
processors. A single Linux operating system runs on the Altix system, providing
an ideal environment for shared-memory programming such as OpenMP.

The system is equipped with SGI message-passing toolkit (MPT 1.12) that
supports MPI programming. We used the Intel Fortran, C/C++ 9.1 compilers
for IA64 that support OpenMP 2.5 as well as the Taskq model. All of our ex-
periments were run under the PBSpro batch system in a shared environment.
In order to reduce variation in timing and improve performance, the “dplace”
placement tool was used to bind processes/threads to physical processors.

For testing the OpenMP Subteam concept as described in Section 3.3, we
employed the Open64 research compiler [7] that was extended to support the
“onthreads” clause. This is essentially a source-to-source translation process
and the generated code is then compiled with a native compiler. A small runtime
library was developed to support basic subteam functions, such as loop iteration
scheduling and synchronization for subteam threads.

4.2 Multi-level Parallelism

In order to compare different multi-level parallel versions of the BT-MZ bench-
mark, we first examine the performance impact from varying the number of zone
groups on a given number of CPUs. The left panel of Fig. 3 plots benchmark

Performance Evaluation of a Multi-zone Application 31

timing in seconds as a function of the number of groups at 32 CPUs for the Class
B problem size. The notation “Ng×Nt” denotes the number of zone groups (Ng)
formed for the first level parallelism and the number of threads (Nt) for the sec-
ond level parallelism within each group. In the hybrid MPI+OpenMP version,
Ng is the same as the number of MPI processes and Nt is the number of OpenMP
threads per MPI process. Ng in the nested OpenMP versions is the number of
outer-level threads, and in the subteam version is the number of subteams.

0

20

40

60

T
im

e
(s

ec
)

32×1 16×2 8×4 4×8 2×16 1×32

Number of CPUs (Ng×Nt)

 Nested OMP v1
 Nested OMP v2
 Subteam
 MPI+OpenMP

Class B
32 CPUs

2

4

8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256

Number of CPUs

 Nested OMP v1
 Nested OMP v2
 Subteam
 MPI+OpenMP

BT-MZ Class B

Fig. 3. Timing comparison of nested OpenMP, Subteam, and MPI+OpenMP versions
of BT-MZ for the Class B problem, on the left for a given number of CPUs and on the
right as a function of CPU counts

Overall the subteam version is very close in performance to the MPI+OpenMP
hybrid version. This indicates that the data layout of the subteam version is very
similar to that of the hybrid version, even though Subteam uses shared data ar-
rays and MPI uses private data arrays. At single level parallelization, either
N×1 or 1×N , the performance of three approaches is very close. Between the
two ends, the nested-OpenMP v1 performs consistently 30-80% worse than the
other two versions. By reducing the number of inner-level parallel regions in
the second version (v2), the performance of nested OpenMP improved substan-
tially, although it still lags behind. The large overhead associated with the inner
parallel regions is likely due to the inability of the OpenMP runtime library to
reuse threads efficiently at the second level. Even though the dplace tool binds
the first-level threads properly, it has no control over the second-level threads.
This result is consistent with the previous observation by Ayguade et al. [1]

The best performance is achieved by maximizing the number of zone groups as
long as the workload can be balanced. For Class B, the optimal number of zone
groups is 16. Beyond 16 CPUs, multi-level parallelism is needed for additional
performance gain. Both subteam and hybrid versions follow this analysis, but
the nested OpenMP tends to prefer a larger number of threads at the outer level,
especially when the total number of CPUs increases.

The scaling results of BT-MZ from the best combinations of zone-groups and
threads are summarized in right panel of Fig. 3. Both the subteam and hybrid

32 H. Jin, B. Chapman, and L. Huang

versions scale well up to the measured CPU counts. Up to 16 CPUs, when only
the outer-level parallelism is employed, the nested OpenMP versions performs
similarly to the other two versions. Beyond 16 CPUs, nested OpenMP suffers
from large overhead associated with the second-level parallelism and becomes
much worse at larger CPU counts.

To understand better why the nested OpenMP codes suffer from performance
degradation in the multi-level mode, we collected additional performance in-
formation from hardware counters available on the Altix and the results from
the 8×4 runs are compared with the hybrid MPI+OpenMP runs in Fig. 4. The
nested OpenMP v1 has the highest stalled cycles and L3 cache misses, which is
an indication of thread-data mismatch. Stalled cycle is usually a result of waiting
on resources, in particular memory. Although the nested OpenMP v2 reduced
stalled cycles, but it has large L3 cache misses. Three pure OpenMP codes have
somewhat higher TLB misses; but on the Altix, a TLB miss has less impact on
the overall performance. Other counters, such as L1 and L2 cache misses, have
similar values for all four codes and are not included in the graph.

4.3 Unbalanced Workload

To test the effectiveness of OpenMP runtime schedule kinds and more dynamic
approaches on unbalanced workload, we focus on the single-level OpenMP ver-
sions of BT-MZ as described in Sections 3.4 and 3.5, which exploit parallelism
among unbalanced zones. No nested parallelism is considered here.

4.3.1 Impact of Schedule Kind
The results from 16-thread runs using different runtime schedule kinds and chunk
sizes are shown in Fig. 5. The “dynamic,1” schedule produces the best result for
the given problem. As the chunk size increases, the performance decreases. The

0.0

0.5

1.0

1.5

2.0

2.5

V
al

ue
 R

el
at

iv
e

to
 H

yb
rid

stalled cycles

L3 hit ra
te

L3 miss ratio

TLB miss

mispredicted branches

cycles with no instrs

wall clock tim
e

Nested OMP v1
Nested OMP v2
Subteam
MPI+OpenMP

Class B
8×4 CPUs

Fig. 4. Comparison of hardware performance
counter results obtained on the Altix for the
8×4 runs of the four BT-MZ versions

5

10

15

20

G
flo

p/
s

dynamic guided static

1

2

4

1

2

4

1

2

4 no
 c

hk
sz

Class B
16 threads

Fig. 5. Performance comparison of
different schedule kinds for BT-MZ
Class B, 16 threads. Numbers in the
graph indicate chunk sizes. The last
bar is for a static schedule without
chunk size.

Performance Evaluation of a Multi-zone Application 33

“guided” schedule is only slightly worse. The “static” schedule without chunk
size (the last bar in the graph) shows its limitation in dealing with unbalanced
workload and is as much as 50% worse than the “dynamic,1” schedule. The
“static,1” (or cyclic) schedule improves the performance but not sufficiently.

4.3.2 Workload Ordering on Performance
As noted in the benchmark description, the zone workload in BT-MZ was de-
signed to be uneven. Class B contains 64 zones whose sizes, shown in Fig. 6 on the
left, range from 3K to 60K mesh points. The right graph in Fig. 6 shows the per-
formance impact of three different orderings of zones in size on the “dynamic,1”
schedule: natural (original) order, descending order, and ascending order. For
comparison, the graph also includes results from a single-level OpenMP version
that uses the static bin-packing algorithm for load balancing. This version is
essentially the same as the nested OpenMP v1 described in Section 3.2 with-
out the nested parallelism. We observe that by sorting zones into descending
order, the performance can improve by as much as 45% (18 to 26 Gflop/s on 16
threads). This result supports the observation reported by Van Zee et al. [12] in
their FLAME code using the workqueuing model.

The impact of different workload orderings on the “guided” schedule (not
shown in the graph) is very similar to that on the “dynamic” schedule. It is worth
noting that the dynamic approach for unbalanced workload is only slightly worse
(∼15% beyond 16 threads) than the static bin-packing approach. However, the
programming effort in the former case is considerably less.

0

20K

40K

60K

D
at

a
S

iz
e

0 10 20 30 40 50 60

Zone Number

 Natural Order
 Descending Order

Class B

2

4

8

16

32

64

G
flo

p/
s

1 2 4 8 16 32 64

Number of Threads

Natural order
Descending order
Ascending Order
Bin-packing

BT-MZ
Class B

Fig. 6. Performance impact of different workload orderings on the “dynamic” schedule.
Results from the static bin-packing approach are included for comparison.

4.3.3 Workqueuing Model
Before going into the workqueuing (or taskq) model, we first examine the per-
formance change as a result of converting the code from Fortran to C. Due to
pointer aliasing, a C code can suffer from the constraint in compiler optimization
for pointers. In order to reduce or even eliminate pointer aliasing, one can either

34 H. Jin, B. Chapman, and L. Huang

use the “restrict” modifier or rely on compiler flags. The Intel compiler pro-
vides the option “-fno-alias” for this purpose. Table 1 summarizes the results
of the OpenMP C version of BT-MZ using different compiler aliasing options and
compares with the Fortran version. The no-alias option produces more than twice
as much improvement in performance as the default aliasing option. Combining
with the “restrict” modifier, the C code performs very close to the Fortran
counterpart. This combined option was used in collecting the C results below.

Table 1. Comparison of results from different aliasing options for the Class B, BT-MZ
on 16 threads

Case Time(sec) Gflop/s Compiler option

Default aliasing 49.86 12.059
“restrict” keyword 37.17 16.175 -restrict

C No aliasing 23.49 25.594 -fno-alias

Combination 23.38 25.718 -restrict -fno-alias

Fortran 23.01 26.124

Figure 7 compares the Intel Taskq version of BT-MZ with the single-level
OpenMP versions (both C and Fortran) using dynamic scheduling for load bal-
ancing. It is encouraging to note that the Taskq version has similar performance
to the single-level OpenMP C version using the “dynamic,1” schedule up to
32 threads. Only at 64 threads the dynamic-schedule version outperforms the
Taskq version by about 20%. As illustrated by the two panels in the figure, sort-
ing workload into descending order improves overall performance for Taskq as
well. Comparing to the Fortran version, the performance of Taskq gets worse at
larger thread counts, primarily due to the difference between Fortran and C.

2

4

8

16

32

64

G
flo

p/
s

1 2 4 8 16 32 64

Number of Threads

Descending Order
Fortran: dyn,1
C: dynamic,1
C: taskq

BT-MZ
Class B

1 2 4 8 16 32 64

Number of Threads

Natural Order
Fortran: dyn,1
C: dynamic,1
C: taskq

BT-MZ
Class B

Fig. 7. Performance comparison of the Taskq version with the single-level OpenMP
versions (in both C and Fortran) using the “dynamic,1” schedule

Performance Evaluation of a Multi-zone Application 35

5 Conclusion

We have presented performance evaluation of four different OpenMP approaches
in dealing with multi-level parallelism and unbalanced workload, and compared
with a hybrid MPI+OpenMP method. The nested OpenMP approach suffered
from performance degradation as a result of large overhead and lack of thread
reuse when invoking the inner level parallelism. By minimizing the number of
inner level parallel regions we improved nested OpenMP performance dramati-
cally. Another potential way to reduce overhead associated with nested parallel
regions is by predefining a thread tree structure as proposed in [1] and [13] so
that the runtime can perform better scheduling optimization.

The approach based on the Subteam extension to OpenMP overcame some
of the limitations with nested OpenMP and showed promise in achieving per-
formance close to that of the hybrid MPI+OpenMP method. Our study also
points out the importance of extending the Subteam proposal to include API
for subteam creation and management.

It is very encouraging that the more dynamic approach provided by the
workqueuing model showed great potential in dealing with unbalanced work-
load. This model can benefit from using a weight factor in scheduling tasks.

For future work, we would like to conduct our experiments on more platforms,
in particular to study the support of nested parallelism from different compil-
ers and runtime systems. A natural extension is to investigate the performance
characteristics of nested parallelism under the workqueuing model. It is also im-
portant to extend our experience from a single benchmark application to more
realistic applications.

Acknowledgements

The authors would like to acknowledge fruitful discussions with Robert Hood,
Johnny Chang, and support from the staff at NAS division for many experiments
conducted on the Columbia supercomputer.

References

1. Ayguade, E., Gonzalez, M., Martorell, X., Jost, G.: Employing Nested OpenMP
for the Parallelization of Multi-Zone Computational Fluid Dynamics Applications.
Monien, B. (ed.) J. of Parallel and Distributed Computing, special issue, 66(5),
686 (2006)

2. Bailey, D., Barton, J., Lasinksi, T., Simon, H.: The NAS Parallel Benchmarks.
NAS Technical Report RNR-91-002, NASA Ames Research Center (1991)

3. Biswas, R., Djomehri, M.J., Hood, R., Jin, H., Kiris, C., Saini, S.: An Application-
Based Performance Characterization of the Columbia Supercluster. In: Proc. of
the ACM/IEEE SC 2005 Conference (2005)

4. Bull, M.: OpenMP 3.0 Overview. In: OpenMP BoF at the SC 2006 conference
(2006), http://www.compunity.org/futures/

http://www.compunity.org/futures/

36 H. Jin, B. Chapman, and L. Huang

5. Chapman, B., Huang, L., Jin, H., Jost, G., de Supinski, B.: Toward Enhancing
OpenMP’s Work-Sharing Directives. In: Nagel, W.E., Walter, W.V., Lehner, W.
(eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 645–654. Springer, Heidelberg (2006)

6. Jin, H., Van der Wijngaart, R.F.: Performance Characteristics of the Multi-Zone
NAS Parallel Benchmarks. Monien, B. (ed.) J. of Parallel and Distributed Com-
puting, special issue, 66(5), 674 (2006)

7. Open64 Research Compiler, http://www.open64.net/
8. The OpenMP Standard, http://www.openmp.org/
9. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible Control Structure for Paral-

lelism in OpenMP. In: European Workshop on OpenMP (EWOMP 1999) (1999)
10. Su, E., Tian, X., Girkar, M., Haab, G., Shah, S., Petersen, P.: Compiler Support

of the Workqueuing Execution Model for Intel SMP Architectures. In: European
Workshop on OpenMP (EWOMP 2002) (2002)

11. Van der Wijngaart, R.F., Jin, H.: The NAS Parallel Benchmarks, Multi-Zone Ver-
sions. NAS Technical Report NAS-03-010, NASA Ames Research Center (2003),
http://www.nas.nasa.gov/Software/NPB/

12. Van Zee, F., Bientinesi, P., Low, T.M., Van de Geijn, R.: Scalable Parallelization
of FLAME Code via the Workquenuing Model. ACM Trans. on Math.Software
(submitted, 2006)

13. Zhang, G.: Extending the OpenMP Standard for Thread Mapping and Grouping.
In: International Workshop on OpenMP (IWOMP 2006), Reims, France (2006)

http://www.open64.net/
http://www.openmp.org/
http://www.nas.nasa.gov/Software/NPB/

Transactional Memory and OpenMP

Miloš Milovanović, Roger Ferrer, Osman S. Unsal, Adrian Cristal,
Xavier Martorell, Eduard Ayguadé, Jesús Labarta, and Mateo Valero

Barcelona Supercomputing Center
c/ Jordi Girona 31, 08034 Barcelona, Spain

{milos.milovanovic,roger.ferrer,osman.unsal,adrian.cristal,
xavier.martorell,eduard.ayguade,jesus.labarta,mateo.valero}@bsc.es

http://www.bsc.es

Abstract. Future generations of Chip Multiprocessors (CMP) will pro-
vide dozens or even hundreds of cores inside the chip. Writing appli-
cations that benefit from the massive computational power offered by
these chips is not going to be an easy task for mainstream program-
mers who are used to sequential algorithms rather than parallel ones.
This paper explores the possibility of using Transactional Memory (TM)
in OpenMP, the industrial standard for writing parallel programs on
shared-memory architectures, for C, C++, and Fortran. One of the ma-
jor complexities in writing OpenMP applications is the use of critical
regions (locks), atomic regions and barriers to synchronize the execu-
tion of parallel activities in threads. TM has been proposed as a mecha-
nism that abstracts some of the complexities associated with concurrent
access to shared data while enabling scalable performance. The paper
presents a first proof-of-concept implementation of OpenMP with TM.
Some extensions to the language are proposed to express transactions.
These extensions are handled by our source-to-source OpenMP Mer-
curium compiler and our Software Transactional Memory (STM) library
Nebelung that supports the code generated by Mercurium. The current
implementation of the library has no support at the hardware level, so it
is a proof-of-concept implementation. Hardware Transactional Memory
(HTM) or Hardware-assisted STM (HaSTM) are seen as possible paths
to make the tandem TM-OpenMP more usable. The paper finishes with
a set of open issues that still need to be addressed, either in OpenMP or
in the hardware/software implementations of TM.

Keywords: Compiler, OpenMP, Software Transaction Memory, STM
Library.

1 Introduction

The trend towards incorporating more cores in Chip Multiprocessors (CMP)
will continue, with the potential for hundreds of cores for future technology
generations. Inefficient data access ordering and synchronization primitives such
as locking will limit programmer productivity and application performance for

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 37–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.bsc.es

38 M. Milovanović et al.

those future processors. Transactional Memory (TM) is a crucial mechanism to
tackle this problem by abstracting away the complexities associated by concur-
rent access to shared data [1] where multiple threads need to simultaneously
access shared memory locations atomically.

OpenMP [2], the industrial standard for writing parallel programs on shared-
memory architectures, for C, C++, and Fortran is a “traditional” programming
model in terms of mechanisms offered to guarantee mutual exclusion. It offers
a set of low-level primitives around locks and the high-level critical construct
to protect the access to shared data (through the ownership of one or more
locks). Lock-based mechanisms are complex to use and error prone especially
when trying to avoid deadlock situations or when trying to use fine-grain locking
to achieve better scalability on highly parallel hardware. Consequently there is
currently concern in the programming and computer architecture communities
that a parallel programming productivity/performance wall might be looming
in the horizon.

Transactional Memory (TM) is a promising mechanism to tackle this prob-
lem by abstracting some of the complexities associated with concurrent access to
shared data. With TM, multiple threads can simultaneously try to access multi-
ple shared memory locations within the scope of what is called a “transaction”.
The detection of memory access conflicts causes transactions to rollback.

When compared to TM, locks are pessimistic. With mutual exclusion, only
one thread can hold a given lock at a given time whereas with TM more than
one thread can access a given critical section simultaneously. Given that actual
conflicts are rare in many programs [3], the optimistic TM approach makes much
more sense as a future programming model. With TM the programmer specifies
intent rather than mechanism (i.e. the programmer can focus on determining
where atomicity is necessary, rather than the mechanisms used to enforce it),
resulting in a higher-level abstraction than locks.

Figure 1 shows an excerpt from the SpecOMP2001 AMMP program. In this
case the programmer uses a lock for each atom (a1->lock and a2->lock) to
protect the access to the fields of the two interacting atoms (a1 and a2). And this
is the lock that it is used in each critical region. Due to nature of the program, it
is very rare that more than one processor tries to access the critical region with
the same lock.

Some recently proposed programming models, such as Sun’s Fortress [4], IBMs
X10 [5] and Crays Chapel [6], include an atomic statement to define conditional
and/or conditional atomic blocks of statements that are executed as transactions.
In some cases, atomic can also be an attribute for variables so that any update to
them in the code is treated as if the update is in a short atomic section. OpenMP
also offers an atomic pragma to specify certain indivisible read-operation-write
sequences, for which current microprocessor usually provide hardware support.
For example through load linked-store conditional (LL-SC).

Two main TM implementation styles stand out: hardware- and software-
based. Historically, the earliest design proposals were hardware based. Software
Transactional Memory (STM) [7] has been proposed to address, among other

Transactional Memory and OpenMP 39

#pragma omp parallel default(none)

shared(dielectric, lambda, a_number, atomall)

private (imax, i, a1, a2, xt, yt, zt, fx, fy, fz, a1fx, a1fy,

a1fz, ii, jj, ux, uy, uz, r, k, r0)

{ ... #pragma omp for schedule(guided)

for(i= 0; i< imax; i++) {

...

a1 = (*atomall)[i];

...

for(ii=0; ii< jj;ii++) {

a2 = a1->close[ii];

#ifdef _OPENMP

omp_set_lock(&(a2->lock));

#endif

ux = (a2->dx -a1->dx)*lambda + (a2->x -a1->x);

...

r =one/(ux*ux + uy*uy + uz*uz);

r0 = sqrt(r);

ux = ux*r0;

...

k = -dielectric*a1->q*a2->q*r;

r = r*r*r;

k = k + a1->a*a2->a*r*r0*six;

k = k - a1->b*a2->b*r*r*r0*twelve;

a1fx = a1fx + ux*k;

...

a2->fx = a2->fx - ux*k;

...

#ifdef _OPENMP

omp_unset_lock(&(a2->lock));

#endif

}

#ifdef _OPENMP

omp_set_lock(&(a1->lock));

#endif

a1->fx += a1fx ;

a1->fy += a1fy ;

a1->fz += a1fz ;

#ifdef _OPENMP

omp_unset_lock(&(a1->lock));

#endif

}

} /* omp parallel pragma */

Fig. 1. Excerpt from the SpecOMP2001 AMMP program

things, some inherent limitations of earlier forms of Hardware Transactional
Memory (HTM) [8] such as a lack of commodity hardware with the proposed
features, or a limitation to the number of locations that a transaction can access.

40 M. Milovanović et al.

Beyond these two main approaches, two additional mixed approaches have
recently been considered. Hybrid Transactional Memory (HyTM) [9], [10] sup-
ports transactional execution that generally occurs using HTM transaction but
which backs off to STM transactions when hardware resources are exceeded.
Hardware-assisted STM (HaSTM) combines STM with new architectural sup-
port to accelerate parts of the STMs implementation [11], [12]. These designs
are both active research topics and provide very different performance charac-
teristics: HyTM provides near-HTM performance for short transactions, but a
“performance cliff” when falling back to STM. In contrast, HaSTM may provide
performance some way between HTM and STM.

2 Basic Concepts

A transaction is a sequence of instructions, including reads and writes to mem-
ory, that either executes completely (commit) or has no effect (abort). When a
transaction commits, all its writes are made visible and values can be used by
other transactions. When a transaction is aborted, all its speculative writes are
discarded.

Commit or abort are decided based on the detection of memory conflicts
among parallel transactions. In order to detect and handle these conflicts, each
running transaction is typically associated with a ‘read set’ and a ‘write set’.
Inside a transaction, the execution of each transactional memory read instruc-
tion adds the memory address to the read set. Each transactional memory
write instruction adds the memory address and value to the write set of the
transaction.

Conflict detection can be either eager or lazy. Eager conflict detection checks
every individual read and write to see if there is a conflicting operation in another
transaction. Eager conflict detection requires that the read and write sets of a
transaction are visible to all the other transactions in the system. On the other
hand, with lazy conflict detection a transaction waits until it tries to commit
before checking its read and write sets against the write sets of other transactions.

Another fundamental design choice is how to resolve a conflict once it has been
detected. Usually, if there is a conflict it is necessary to resolve it by immediately
aborting one of the transactions involved in the conflict.

In order to support the execution of a transaction, a data versioning mech-
anism is needed to record the speculative writes. This speculative state should
be discarded on an abort or used to update the global state on a successful
commit. The two usual approaches to implement data versioning are based on
using an undo-log or using buffered updates. Using an undo-log, a transaction
applies updates directly to memory locations while logging the necessary in-
formation to undo the updates in case of abort. On the contrary, approaches
using buffered updates keep the speculative state in a transaction-private buffer
until commit time; if the commit succeeds, the original values before the store

Transactional Memory and OpenMP 41

instructions are dropped and the speculative stores of the transaction are com-
mitted to memory.

HTM proposed systems keep the speculative state of the transactions mostly
in the data cache or in a hardware buffer area. Transactional loads and stores
can be kept in a separate “transactional cache” or in the conventional data
caches, augmented with transactional support. In both cases the modifications
are minimal since transactional support relies on extending existing cache co-
herence protocols such as MESI to detect conflicts and enforce atomicity. On
the contrary, STM implementations must provide mechanisms for concurrent
transactions to maintain their own views of the heap, allowing a transaction
to see its own writes as it continues to run, and allowing memory updates to
be discarded if the transaction ultimately aborts. In addition, STM implemen-
tations must provide mechanisms for detecting and resolving conflicts between
transactions.

3 Our “Proof-of-Concept” Approach

In order to explore how TM could influence the future design and implementation
of OpenMP, we have adopted a “proof-of-concept” approach based on a source-
to-source code restructuring process, implemented in Mercurium [13], and two
libraries to support the OpenMP execution model and to support transactional
memory: NthLib [14] and Nebelung [15], respectively. We also propose some
OpenMP extensions to specify transactions.

3.1 Is OpenMP ATOMIC a Transaction?

The atomic construct in OpenMP ensures that a specific storage location is
updated atomically, rather than exposing it to the possibility of multiple, simul-
taneous writing threads.

#pragma omp atomic
expression-statement

where expression-statement can have a limited number of possibilities, such as
x = x operator expr. Only the load and store of the object designated by x
are atomic; the evaluation of expr is not atomic (and should not include any
reference to x).

Some OpenMP compilers just replace atomic regions by critical regions, usu-
ally excluding from the critical region the evaluation of expr. Others make use of
the efficient machine instructions available in current microprocessors to atomi-
cally access memory or through the use of load-linked store-conditional. Figure 2
shows that for a simple example: the compiler generates code so that expression
on the right is computed first (in this case, a constant value 1). Once evaluated it
“saves” the current version of a(i) and applies the operator (+ in this case). Then

42 M. Milovanović et al.

!$omp parallel

do i = 1, n

!$omp atomic

a(i) = a(i) + 1

enddo

!$omp end parallel

(a)

atomic_expr_a = 1 atomic_old_a = a(i) atomic_new_a=atomic_old_a+

atomic_expr_a DO WHILE (0 .EQ.

atomic_update_4(a(i),atomic_old_a,atomic_new_a))

atomic_old_a = a(i)

atomic_new_a=atomic_old_a+atomic_expr_a

END DO

(b)

Fig. 2. Atomic region in OpenMP and a possible translation

it “tries” to update the shared variable, and if it fails, restores the original value
of a(i) and starts again applying the operator. The while loop finishes when the
atomic update 4 function returns successful (different than 0). So notice that
this is a simplified version, just for a single variable, of a transaction.

3.2 Is OpenMP CRITICAL a Transaction?

The critical construct in OpenMP restricts execution of the associated struc-
tured block to a single thread at a time (among all the threads in the program,
without regard to the team(s) to which the threads belong).

#pragma omp critical [(name)]
structured-block

An optional name may be used to identify the critical construct. All
critical constructs without a name are considered to have the same unspeci-
fied name. A thread waits at the beginning of a critical region until no other
thread is executing a critical region with the same name. The critical con-
struct enforces exclusive access with respect to all critical constructs with the
same name in all threads, not just in the current team.

OpenMP compilers usually replace critical regions with set lock/unset lock
primitives, declaring a different lock variable for each name used in critical con-
structs. From this usual implementation and the description above (taken from
the current 2.5 language specification) we understand that the code in the struc-
tured block can be never speculatively executed by a thread so that several
threads are executing it simultaneously.

Transactional Memory and OpenMP 43

In this case, a first proposal to integrate TM in OpenMP would be to re-
lax the previous description so that “waiting at the begining of the critical
region” does not preclude the thread from executing the structured block spec-
ulatively as a full transaction. However, we prefered to first propose a set of
extensions (construct and clauses) to understant and explore how the TM ab-
straction could fit with the OpenMP programming style and execution model.
We could later see the minimum changes required in the current specification to
integrate transactional execution in OpenMP.

3.3 Proposed OpenMP Extensions for TM

The first extension is a pragma to delimit the sequence of instructions that
compose a transaction:

#pragma omp transaction [exclude(list)|only(list)]
structured-block

With this extension, the programmer should be able to write standard
OpenMP programs, but instead of using intrinsic routines to lock/unlock, atomic
or critical pragmas, he/she could use this pragma to specify the sequence of state-
ments that need to be executed as a transaction. The optional exclude clause
can be used to specify the list of variables for which it is not necessary to check
for conflicts. This means that the STM library does not need to keep track of
them in the read and write sets. On the contrary, if the programmer uses the
optional only clause, he/she is explicitly specifying the list of variables that need
to be tracked. In any case, data versioning for all speculative writes is needed for
all shared and private variables in case the transaction needs to be rolled-back.

Another possibility is the use of a new clause associated to the OpenMP
worksharing constructs:

#pragma omp for transaction [exclude(list)|only(list)]
for (...;...;...)

structured-block

or

#pragma omp sections transaction [exclude(list)|only(list)]
#pragma omp section

structured-block
#pragma omp section

structured-block

In the first case, each iteration of the loop constitutes a transaction, while in
the second case, each section is a transaction.

For OpenMP 3.0, a new tasking execution model is being proposed. Tasks
are defined as deferrable units of work that can be executed by any thread in

44 M. Milovanović et al.

the thread team associated to the active parallel region. Task can create new
tasks and can also be nested inside worksharing constructs. In this scenario, data
access ordering and synchronization based on locks will be even more difficult to
express, so transactions appear as an easy way to express intent and leave the
mechanisms to the TM implementation. For tasks we propose the possibility of
tagging a task as a transaction, using the same clause specified above.

#pragma omp task transaction [exclude(list)|only(list)]
structured-block

3.4 Nebelung Library Interface and Behavior

In order to have a complete execution environment supporting transactional
memory, we have implemented our own STM library, named Nebelung. A de-
tailed explanation of the library and its implementation is out of the scope for
this paper; therefore we present the relevant issues here. The library satisfies the
interface presented in the Figure 3. Nebelung library is typeless (work on a byte
level) so we also developed wrapper functions read and write around readtx
and writetx, which cast results into the proper types. Note that this interface
is similar to the ones provided by other current STM libraries [3].

The library functions have the following semantics: createtx and destroytx
create and destroy the required data structures for the execution of a transaction,
starttx starts the transaction, committx publishes (i.e., makes visible) the re-
sults (writes) of the transaction, aborttx cancels the transaction and retrytx
cancels the transaction and restarts it. readtx and writetx are function library
function calls for handling memory accesses. The transaction should be started
and ended with the code presented in the Figure 4.

The most important parts of the library are surely function calls readtx
and writetx and they require special attention. Both functions operate on the
byte level. writetx receives the real address where the data should be stored,
a size of data and the data itself. Function readtx receives the real address
which should be read and the size of the data, and returns the pointer to the

Transaction* createtx ();

void starttx (Transaction *tr);

status committx (Transaction *tr);

void destroytx (Transaction *tr);

void aborttx (Transaction *tr);

void retrytx (Transaction *tr);

void* readtx (Transaction *tr, void *addr, int blockSize);

void* writetx (Transaction *tr, void *addr, void *obj,

int blockSize);

Fig. 3. Nebelung library interface to support the code generated by the Mercurium
compiler

Transactional Memory and OpenMP 45

{ Transaction* t = createtx(); while (1) {

starttx (t);

if (setjmp (t->context) == TRANSACTION_STARTED) {

(a)

if (COMMIT_SUCCESS == committx (t)) break;

else aborttx (t);

} else aborttx (t);

}

destroytx (t);

}

(b)

startTransaction();

// transaction body

endTransaction();

(c)

Fig. 4. Macros for (a) starting and (b) ending a transaction. (c) Code of the transaction
surrounded by the previous macros.

location which holds the requested data. Returned pointer does not need to be
the same as the original one and this is implementation dependent. This can be
the source of a memory leakage, because it is not clear who should release the
pointed memory. There are two possible implementations of function readtx.
The first implementation option can copy the data to a new location and return
the pointer, requiring the programmer to free it when it is not needed any more.
The other option, which we implemented, is that the library takes care about
everything and returns the pointer to the location which should be just read.
This pointer should not be used later for writing. If the same data should be
modified later, that should be done through function writetx and not directly
through returned pointer.

The current implementation of Nebelung library performs lazy conflict detec-
tion. Read and write sets are maintained dynamically and all memory operations
are performed locally for the transaction. At commit time, the library checks if
there is any conflict with other transactions. If conflict exists, the current transac-
tion is committed and other transactions are aborted. In this way the transaction
progress is guaranteed.

3.5 Source-to-Source Translation in Mercurium

The Mercurium OpenMP source-to-source translator transforms the code inside
the transaction block in such a way that for each memory access, a proper

46 M. Milovanović et al.

#pragma omp transaction {

ux = (a2->dx -a1->dx)*lambda + (a2->x -a1->x);

r =one/(ux*ux + uy*uy + uz*uz);

r0 = sqrt(r);

ux = ux*r0;

k = -dielectric*a1->q*a2->q*r;

r = r*r*r;

k = k + a1->a*a2->a*r*r0*six;

k = k - a1->b*a2->b*r*r*r0*twelve;

a1fx = a1fx + ux*k;

a2->fx = a2->fx - ux*k;

}

(a)

{ startTransaction(); {write(t, &ux, (*read(t, &((*read(t,

&a2))->dx))-

*read(t, &((*read(t, &a1))->dx))) *

*read(t,&lambda)+(*read(t,&((*read(t,&a2))->x))-

*read(t, &((*read(t, &a1)) ->x))));

write(t, &r, *read(t, &one) /(*read(t, &ux) *

*read(t, &ux) + *read(t, &uy) * *read(t, &uy) +

*read(t, &uz) * *read(t, &uz)));

write(t, &r0, sqrt(*read(t, &r)));

write(t, &ux, *read(t, &ux) * *read(t, &r0));

write(t, &k, - *read(t, &dielectric) *

*read(t, &((*read(t, &a1)) ->q)) *

*read(t, &((*read(t, &a2)) ->q)) *

*read(t, &r));

write(t, &r, *read(t, &r) * *read(t, &r) *

*read(t, &r));

write(t, &k, *read(t, &k) +

*read(t, &((*read(t, &a1))->a)) *

*read(t, &((*read(t, &a2))->a)) *

read(t, &r) *read(t, &r0) * *read(t, &six));

write(t, &k, *read(t, &k)

*read(t, &((*read(t, &a1))->b)) *

*read(t, &((*read(t, &a2))->b)) *

*read(t, &r) * *read(t, &r) * *read(t, &r0) *

*read(t, &twelve));

write(t, &a1fx, *read(t, &a1fx)+ *read(t, &ux)* *read(t, &k));

write(t, &((*read(t, &a2)) ->fx) ,

*read(t, &((*read(t, &a2)) ->fx))

*read(t, &ux) * *read(t, &k));

} endTransaction(); }

(b)

Fig. 5. Code generated code for the first critical section in Figure 1 (excerpt from
AMMP SpecOMP2001)

Transactional Memory and OpenMP 47

int f(int); int correct(int* a, int* b, int* x){

int fx;

#pragma omp transaction exclude (fx) {

fx = f(*x);

a += fx;

b -= fx;

}

}

(original code)

int correct(int* a, int* b, int* x){

int fx;

{ startTransaction();

{

fx = f(*read(t, x));

write(t, &a, *read(t, &a) + fx);

write(t, &b, *read(t, &b) - fx);

}

endTransaction();

}

}

(transactional code)

Fig. 6. Example using the exclude clause

STM library function call is invoked. The current version of Mercurium accepts
OpenMP 2.5 for Fortran90 and C.

Figure 5 shows how the first critical region in Figure 1 is specified using our
proposed extensions and the code generated by Mercurium. Figure 6 shows a
synthetic example using the exclude clause.

Finally, Figure 7 shows another example which operates on a binary tree,
inserting n nodes into the tree. We are using the current tasking proposal for
OpenMP 3.0. Notice that n tasks will be created and executed atomically in
parallel. Figure 8 shows the code generated by Mercurium.

3.6 Support for Hardware Transactional Memory

Researchers have not yet built a conscesnus about the best degree of harware sup-
port for transactional memory (i.e. full HTM, HaSTM or HyTM), particularly
when looking at future multicore architectures with large numbers of cores on a
chip and not necessarely cache coherent. This is part of our current work and or-
thogonal to the transformation process discussed in this paper, which can easily
be retargeted to support HTM: we only need to change the startTransaction
and the endTransactionmacros. Those macros should use the proper hardware

48 M. Milovanović et al.

ivoid ParallelInsert(struct BTNode** rootp, int n, int keys[], int

values[]){ #pragma omp parallel single {

for (int i = 0; i < n; ++i) {

int key = keys[i], value=values[i];

#pragma omp task capturevalue(key, value) captureaddress(rootp) {

int inserted, f;

BTNode* curr;

BTNode* n;

n = NewBTNode;

initNode(n,key,value);

inserted = 0;

f = 0;

#pragma omp transaction {

if (*rootp == 0) {*rootp = n;}

else {

curr = *rootp;

while (inserted == 0) {

if (curr->key == key){

curr->value = value;

curr->valid = 1;

inserted = 1;

f = 1;

} else if (curr->key> key) {

if (curr->left == 0) {curr->left = n; inserted = 1;}

else curr = curr->left;

} else {

if (curr->right == 0) {

curr->right = n;

inserted = 1;

} else curr = curr->right;

}

}

}

} // end oftransaction

if (f == 1) free(n);

} // end of task

} // end if for loop

} // end of parallel region

} // end of ParallelInsert function

Fig. 7. Function for parallel insertion of n nodes into a binary search tree, expressed
using the tasking execution model

ISA instructions for the start and the end of the transaction. The transformation
of loads and stores is not needed anymore. To illustrate this, in this paper we
chose to incorporate the HTM proposed by McDonald et. al [16] with instructions

Transactional Memory and OpenMP 49

{ startTransaction(); { if (*read(t, rootp) == 0) { write(t,

rootp, *read(t, &n));

} else {

write(t, &curr, *read(t, rootp));

while (*read(t, &inserted) == 0) {

if (*read(t, &((*read(t,&curr))->key))== *read(t, &key)) {

write(t, &((*read(t, &curr))->value), *read(t, &value));

write(t,&((*read(t,&curr))->valid),1);

write(t, &inserted, 1);write(t, &f, 1);

} else if (*read(t,&((*read(t, &curr))->key)) > *read(t, &key)) {

if(*read(t,&((*read(t, &curr))->left)) == 0) {

write(t, &((*read(t, &curr))->left), *read(t, &n));

write(t, &inserted, 1);

} else

write(t, &curr, *read(t,&((*read(t,&curr))->left)));

} else { if(*read(t,&((*read(t,&curr))->right)) == 0) {

write(t,&((*read(t, &curr))->right), *read(t, &n));

write(t, &inserted, 1);

} else write(t, &curr, *read(t, &((*read(t,&curr))->right)));

}

}

}

} endTransaction();}

Fig. 8. Code generated for the transaction inside the parallelInsert function

#define startTransaction() \

{ asm { xbegin }

#define endTransaction() \

asm { xvalidate \

xcommit \

} \

}

Fig. 9. Support for HTM. Definition in pseudo code, of startTransaction and
endTransaction macros in case hardware has instructions xbegin and xcommit for
the start and the end of the transaction, and xvalidate for the validation of the
transaction.

xbegin, xcommit and xvalidate (denoting the start, end and validation of
the transaction, respectively). In this case, the start and end macros would be
as shown in Figure 9. Note that endTransaction semantics require xvalidate
since [16] uses two-phase commit.

For those variables that do not need to be tracked, the HTM proposed in
[16] includes instructions imld and imst for load and store without changing
read and write sets. Figure 10 shows how the compiler would generate code for
a simple a = b + c statement, where c does not need to be tracked, for both
STM and HTM.

50 M. Milovanović et al.

4 Open Issues

In addition to the HTM implementation challenge mentioned in the previous
section, there are other issues that become important challenges when TM is
incorporated into OpenMP. Some issues are research challenges while other are
restrictions on the way OpenMP and TM can be combined.

The first issue refers to transaction nesting. Nested transactions can be sup-
ported in two different ways: closed nested or open nested. In a closed nested TM
system either all the transactions that are in a nested region commits or neither.
In comparison, in an open nested TM when an inner transaction commits its
effects are made visible for all threads in the system. The use of open nested
transactions can unleash more concurrency than closed nested ones. When an
open nested transaction commits, its write set is made visible to all other trans-
actions, so other transactions can see the modifications sooner and work with
this modified data. However open nested transactions increase the burden of the
programmer: compensating actions are needed when the outermost transaction
commits and when one of the surrounding transactions aborts. The handling of
this compensating code could be quite complex, and the programmer must have
an expert level grasp of the semantics of the code. For this reason, although
OpenMP-TM can incorporate closed-nested transactions relatively easily, open-
nested transactions are challenging because the compensating code could impact
the sequential nature of the program when it is compiled without OpenMP.

a = b + c;

(original code)

write(t, &a, *read(&b) + c);

(transformed STM code)

asm {

load r0, b

imld r1, c

add r0, r1

store a, r0

}

(transformed HTM code)

Fig. 10. Transformation of a simple statement using ii) STM or iii) HTM in pseudo
assembler code

The second issue refers to the use of I/O inside a transaction. I/O inside a
critical section is not a problem for OpenMP because such blocks are protected
and never rolled back. However, for TM the issue is different: suppose that inside
a transaction, a system call attempts to output a character to the terminal.
One solution is to execute the system call immediately; however it would be
very problematic if this transaction aborts later. Trying to “undo” the I/O by
deleting the character upon an abort would obviously lead to a very wobbly
system. In some cases, even executing the I/O operation may be difficult if
the data is buffered in HTM. A different approach to solve the I/O problem
would be to categorize I/O based on their abortive properties. By definition,

Transactional Memory and OpenMP 51

an I/O call is undoable if its effects could be rolled back which in turn implies
that its effects are self-contained to the I/O operation only. Here, the challenge
is to allow maximum programmer expressiveness while avoiding too complex
implementations. Inevitably, programmers must be aware of certain kinds of
I/O operation that simply do not make sense to transparently perform as part
of a single atomic transaction: for instance, prompting the user for input and
then receiving and acting on the input. However note that those compensating
actions can also affect the sequential nature of the program when it is compiled
without OpenMP. We believe that a first-order approach is to forbid the I/O
operations in OpenMP-TM transactions.

Another issue is about the nesting of OpenMP constructs and transactions.
There are two cases that one needs to consider. In the first case, a transaction
might exist inside an OpenMP parallel region or worksharing construct. Note
that the transaction might be invoked from within a library call, so the pro-
grammer might not be aware of this. However, even with this added complexity,
this case is easy to handle: each thread in the team will be having a transac-
tion inside. The other case, where an OpenMP parallel or worksharing construct
appears inside the scope of a transaction, is more complicated. Note that for
this case as well, the programmer may not be aware that an OpenMP construct
exists within the transaction; this can happen if the programmer uses library
function inplemented in OpenMP. The complexity rises from the fact any of the
OpenMP threads are liable to be aborted at any time. This signifies that if one
created thread is aborted, then all the other threads must also abort unneces-
sarily due to the semantics of TM. This can be avoided using a mechanism like
close-nested transaction allowing to rollback only the conflicting thread if it is
possible to ensure that the conflict only affects this thread.

Finally, it would be interesting to include additional functionalities to the
basic transactional execution model offered by transaction. For example, we
could specify a condition; if the evaluation of the condition returns false then the
transaction is known to abort. Similarly, we could add a condition that needs
to be evaluated once a transaction is aborted; if the evaluation of the condition
returns false, it is known that a reexecution of the transaction will fail again. So
it is better no to execute it until the condition is true. These conditions could
for example include operators to check that a shared variable has been accessed
(touch(var name)).

#pragma omp transaction [retrywhen(condition)][executeif(condition)]

structured-block

5 Conclusions

In this paper we have done a first exploration of how Transactional Memory
(TM) could provide a more graceful and natural mechanism to write parallel
programs than using lock-based mechanisms. Recently there is a flurry of re-
search activity to define and design Hardware and Software Transactional Mem-
ory, and our OpenMP community should follow this activity in order to take

52 M. Milovanović et al.

benefit as soon as possible. This paper has covered a basic proposal to extend
OpenMP with transactions and identified some significant future challenges in
the OpenMP-TM tandem. However, the biggest challenge is to make the adop-
tion of Transactional Memory by the (OpenMP) programmer community as
smooth as possible through HW/SW design; effective mechanisms for support-
ing TM are crucial to fulfilling the promise of improved application performance
on future many-core CMPs.

During the preparation of this version of the paper, we realized that a paper
on a similar topic was accepted for publication [17]. However, only the abstract of
the other paper was available to us, so we were not able to make any comparisons
at this point.

Acknowledgments. This work is supported by the cooperation agreement be-
tween the Barcelona Supercomputing Center National Supercomputer Facility
and Microsoft Research, by the Ministry of Science and Technology of Spain
and the European Union (FEDER funds) under contract TIN2004-07739-C02-
01 and by the European Network of Excellence on High-Performance Embedded
Architecture and Compilation (HiPEAC).

References

1. Larus, J., Rajwar, R.: Transactional Memory. Morgan Claypool, San Francisco
(2006)

2. OpenMP Architecture Review Board, OpenMP Application Program Interface
(May 2005)

3. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing Memory Transactions.
In: PLDI 2006. ACM SIGPLAN 2006 Conference on Programming Language De-
sign and Implementation (June 2006)

4. Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr., G.L.,
Tobin-Hochstadt, S.: The Fortress Language Specification. Sun Microsystems
(2005)

5. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an Object-oriented approach to non-uniform Cluster
Computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems Languages and Applications (OOPSLA),
New York, USA, pp. 519–538 (2005)

6. Cray. Chapel Specification (February 2005)
7. Shavit, N., Touitou, D.: Software Transactional Memory. In: Proceedings of the

14th Annual ACM Symposium on Principles of Distributed Computing, pp. 204–
213 (1995)

8. Herlihy, M., Eliot, J., Moss, B.: Transactional Memory: Architectural Support for
Lock-Free Data Structures. In: Proc. of the 20th Int’l Symp. on Computer Archi-
tecture (ISCA 1993), May 1993, pp. 289–300 (1993)

9. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybid
Transactional Memory. In: Proceedings of the Twelfth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS) (October 2006)

Transactional Memory and OpenMP 53

10. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid Transactional
Memory. In: Proceedings of ACM Symp. on Principles and Practice of Parallel
Programming (March 2006)

11. Saha, B., Adl-Tabatabai, A., Jacobson, Q.: Architectural Support for Software
Transactional Memory. In: 39th International Symposium on Microarchitecture
(MICRO) (2006)

12. Shriraman, A., Marathe, V.J., Dwarkadas, S., Scott, M.L., Eisenstat, D., Heriot, C.,
Scherer III, W.N., Spear, M.F.: Hardware Acceleration of Software Transactional
Memory. In: TRANSACT 2006 (2006)

13. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.:
Nanos Mercurium: A Research Compiler for OpenMP. In: European Workshop on
OpenMP (EWOMP 2004), Stockholm, Sweden, October 2004, pp. 103–109 (2004)

14. Martorell, X., Ayguadé, E., Navarro, N., Corbalan, J., Gonzalez, M., Labarta, J.:
Thread Fork/join Techniques for Multi-level Parallelism Exploitation in NUMA
Multiprocessors. In: 13th International Conference on Supercomputing (ICS 1999),
Rhodes (Greece) (June 1999)

15. Milovanović, M., Unsal, O.S., Cristal, A., Stipić, S., Zyulkyarov, F., Valero, M.:
Compile time support for using Transactional Memory in C/C++ applications.
In: 11th Annual Workshop on the Interaction between Compilers and Computer
Architecture INTERACT-11, Phoenix, Arizona (February 2007)

16. McDonald, A., Chung, J., Carlstrom, B., Minh, C., Chafi, H., Kozyrakis, C., Oluko-
tun, K.: Architectural Semantics for Practical Transactional Memory. In: Proc.
33th Annu. international symposium on Computer Architecture, pp. 53–65 (2006)

17. Baek, W., Minh, C.-C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The OpenTM
Transactional Application Programming Interface. In: Proc. 16th International
Conference on Parallel Architectures and Compilation Techniques (PACT 2007),
Romania (September 2007)

OpenMP on Multicore Architectures

Christian Terboven, Dieter an Mey, and Samuel Sarholz

Center for Computing and Communication,
RWTH Aachen University

{terboven,anmey,sarholz}@rz.rwth-aachen.de

Abstract. Dualcore processors are already ubiquitous, quadcore pro-
cessors will spread out this year, systems with a larger number of cores
exist, and more are planned. Some cores even execute multiple threads.
Are these processors just SMP systems on a chip? Is OpenMP ready to
be used for these architectures? We take a look at the cache and memory
architecture of some popular modern processors using kernel programs
and some application codes which have been developed for large shared
memory machines beforehand.

1 Introduction

Chip multi-processing (CMP) already is ubiquitous. The first dualcore processor
was IBM’s Power4 chip, which was introduced in 2001, and Sun’s UltraSPARC-
IV processor followed in 2004. Since AMD and Intel introduced their first dual-
core processor chips in 2005 and 2006 respectively, discounters are selling PCs
equipped with dualcore processors. Today, Intel’s first quadcore processor (code
named Clovertown) is available and AMD will follow later this year. Some cores
even execute multiple threads (CMT=chip multi-threading), the first popular
implementation was Intel’s Hyper-Threading technology. Sun’s UltraSPARC T1
processor (code named Niagara) provides 8 cores running 4 threads each, but
offers only little floating point capabilities.

Multicore processors provide more compute power for less energy and produce
less heat, which has become the delimiting factor for building processors with
higher clock rates. As a consequence parallelization is getting even more impor-
tant. Thus the questions arise, whether these processors are just SMP systems
on a chip and whether OpenMP is ready for these architectures.

We take a look at some popular modern processors which we describe in
chapter 2. Using some kernel programs, we investigate the cache and memory
architecture of these machines in chapter 3 and then take a look at some applica-
tion codes which have been parallelized with OpenMP for large shared memory
machines beforehand in chapter 4 before we conclude in chapter 5.

2 The Machinery

For our performance analysis experiments we used several dualcore and one
quadcore machine. It turned out that these machines have different character-
istics regarding memory latency, memory bandwidth and OpenMP scheduling

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 54–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

OpenMP on Multicore Architectures 55

Table 1. Machines (with abbreviations) used for performance analysis

Machine / Processor / Abbrev. Sockets Chips Cores Threads Level 2
year of Frequency per per per Cache
installation [GHz] Socket Chip Core

Noname Intel XeonHT 2 1 1 2 0.5 MB
Pentium4 Xeon / chip

2003 2.66

Sun Fire Sun Ultra- USIV 12 1 2 1 8 MB
E2900 SPARC IV / core
2004 1.2

Sun Fire Sun Ultra- Niagara 1 1 8 4 3 MB
T2000 SPARC T1 / chip
2005 1.0

Sun Fire AMD Opteron 4 1 2 1 1 MB
V40z Opteron875 / core
2005 2.2

Dell Power- Intel Woodcrest 2 1 2 1 4 MB
Edge 1950 Xeon 5160 / chip
2006 3.0

Dell Power- Intel Clovertown 2 2 2 1 4 MB
Edge 1950 Xeon 5355 / chip
2007 2.66

overhead. Table 1 summarizes the architecture details and introduces abbrevia-
tions that are used throughout the rest of this paper.

The machines differ in how the memory is organized. Whereas the USIV, Nia-
gara, Woodcrest and Clovertown machines have a rather flat memory system, the
Opteron-based machine has a ccNUMA architecture. Whereas the local memory
access is very fast on such a system, multiple simultaneous remote accesses can
easily lead to grave congestions of the HyperTransport links.

The processors investigated here differ in how their level 2 (L2) cache is orga-
nized. The USIV and the Opteron processors have one cache per core, whereas
the Niagara and the Woodcrest processors both have an L2 cache that is shared
by all cores. The Clovertown integrates two Woodcrest chips onto one socket
and therefore it has two L2 caches which are shared by two cores each. Table 1
also lists the L2 cache sizes and their association.

On the Intel-based machines the Linux operating system is running, on the
SPARC- and Opteron-based machines the Solaris operating system is running.
On Linux, we used the Intel 10.0 beta (release 0.013) compilers, as they in-
troduced explicit optimizations for the Woodcrest and Clovertown processors.
On Solaris, we used the Sun Studio Express (build 35 2) compilers, again these
pre-production compilers delivered the best performance.

The operating systems present the multicore processors to the user as if there
were multiple singlecore processors in the system. However, they differ in how
the cores are numbered. For a dual-socket dualcore processor system, the Solaris
operating system assigns the virtual processor ids 0 and 1 to the first socket and

56 C. Terboven, D. Mey, and S. Sarholz

2 and 3 to the second socket. The Linux operating system on the other hand,
assigns 0 and 2 to the first socket and 1 and 3 to the second socket. On the
quadcore Clovertown system, the virtual processor ids 0 to 3 are assigned to the
first socket and 4 to 7 are assigned to the second socket. However, the ids 0 and
2 share one cache, for example.

3 Memory Performance

3.1 Memory Latency and Bandwidth

Latency. The memory latency can be measured using a technique named pointer
chasing by a long sequence of load instructions, as implemented by the following
code snippet:

p = (char **)*p;

The content of the memory location just read from memory delivers the ad-
dress of the following load instruction. Thus, these load instructions cannot be
overlapped. The addresses have a stride of -64 causing the load of an L2 cache
line for each load instruction.

Bandwidth. The next code snippet shows the operation that is timed in order
to measure the memory bandwidth:

long long *x, *xstart, *xend, mask;
for (x = xstart; x < xend; x++) *x ^= mask;

So each loop iteration involves one load and one store of a variable of type
long long.

We ran an OpenMP-parallelized version of both kernels in order to find out in
how far multiple threads interfere with each other and we used explicit processor
binding to carefully placed the threads onto the processor cores. The threads
work on large ranges of private memory which do not fit in the L2 caches, so
each load and store operation goes to main memory (see table 2).

Table 2 contains a column “Boards-Sockets-Chips-Cores-Threads” which de-
scribes how we distributed the OpenMP threads onto the machines. For example
“1-2-1-2-1” signifies that we ran 4 OpenMP threads using 1 board, 2 sockets on
this board, 1 chip on each socket (Clovertown has 2 chips per socket), 2 cores
per chip and 1 thread per core.

The table indicates that the AMD and Intel processors profit from hardware
prefetches when accessing successive memory chunks of 64 bytes in reverse order.
Interestingly, the memory latency does not suffer much when increasing the
stress on the memory systems of the machines. Four threads on the Woodcrest
experience a quadruplication and 8 threads on the Clovertown experience an
8-fold increase of the memory latency.

Both the Woodcrest and the Clovertown machines display a high memory
bandwidth for one thread. When running two threads the achievable memory
bandwidth already heavily depends on their placement. On the Woodcrest it is

OpenMP on Multicore Architectures 57

profitable to run two threads on two chips which each have their own socket.
On the Clovertown it is profitable to run two threads on both chips residing on
the same socket, whereas if two threads run on separate sockets, the bandwidth
drops by a factor of 1.5. Two threads running on both cores of a single chip
clearly experience a memory bandwidth bottleneck on both machines. On the
other hand two threads are able to almost consume the maximum available
memory bandwidth on these machines.

The USIV, Niagara and Opteron machines provide less memory bandwidth
for one thread, but display a better scalability.

The placement of the data is an important issue on the Opteron machine,
which has a pronounced ccNUMA architecture. These tests clearly profit from
a careful usage of the first touch policy compared to a quasi-random placement.

The memory bandwidth of the Niagara machine seems to be optimal with 16
threads running on 4 out of 8 cores - a fact which deserves further investigations.

The older XeonHT machine clearly suffers from a known memory bottleneck
which prohibits any scalability.

3.2 Matrix Transposition

Matrix transposition involves no floating point operations, but stresses the mem-
ory bandwidth. A square matrix with 8 byte floating point numbers large enough
to not fit in the available caches is read once and written once. When program-
ming in C, matrix rows are stored consecutively in memory. Reading and writing
rows leads to nice memory access patterns using whole cache lines efficiently,
whereas accessing the matrix column wise, only 8 bytes are used out of each
cache line, which are 64 byte for all machines under investigation. Obviously,
the algorithm which we are using can be improved by blocking. But we want
to find out, how the processors’ memory hierarchies cope with unfavorable ac-
cesses. In many cases we experience quite some variations in the measurements
depending on the memory footprint. This kind of experiments is quite sensitive
to peculiarities of the cache architecture, like cache associativity effects. Here we
do not want to focus on such details but just look at the memory performance
in relation to the thread placement and the loop scheduling. Therefore the ta-
ble contains memory bandwidth ranges of the matrix transpose as have been
measured in our experiments.

USIV. With one thread the obtainable memory bandwidth is about 0.7 GB/s.
With more threads the memory performance depends on the loop schedule.
A static schedule for 2 threads leads to a slight improvement (approx. 0.95
GB/s) because the matrix transpose leads to a load imbalance, such that the
slave thread has some idle time. This load imbalance can be easily cured by
a suitable loop schedule like guided,8, whereas the dynamic schedule adds too
much overhead. The USIV machine reveals a very flat memory system and thread
placement only has a minor effect.

Niagara. A single thread only obtains a bandwidth of about 0.4 GB/s. When
running up to 8 threads on different cores, the bandwidth nicely scales, whereas

58 C. Terboven, D. Mey, and S. Sarholz

Table 2. Latency and Bandwidth measurements of multicore architectures

Boards- Accum. Matrix Transpose

Architecture #Threads Sockets-Chips- Latency Bandwidth Best effort

Cores-Threads [nsec] [MB/s] Schedule Bandwidth

USIV 1 1-1-1-1-1 233 1609 static 0.7

2 1-1-1-2-1 249 3100 guided 1/8 1.4

2 1-2-1-1-1 233 3137 guided 1/8 1.4

4 1-2-1-2-1 250 4333 guided 1/8 2.3

4 1-4-1-1-1 234 5295 guided 1/8 2.4-2.5

8 1-4-1-2-1 251 6402 guided 1/8 3.5-4.0

8 2-4-1-1-1 240 6056 guided 1/8 3.4-3.6

16 2-4-1-2-1 260 7006 guided 1/8 4.4-5.0

Niagara 1 1-1-1-1-1 108 845 static 0.38-0.42

2 1-1-1-1-2 110 1580 dynamic,1 0.41-0.46

2 1-1-1-2-1 110 1660 guided,1/8 0.76-0.85

4 1-1-1-1-4 110 2770 dynamic,1 0.45-0.49

4 1-1-1-2-2 110 3156 dynamic,1 0.84-0.94

4 1-1-1-4-1 110 3451 guided 1/8 1.52-1.70

8 1-1-1-2-4 111 5464 dynamic,1 0.9-1.0

8 1-1-1-4-2 111 6216 dynamic,1 1.76-1.87

8 1-1-1-8-1 111 6512 dynamic,1 3.36-3.38

16 1-1-1-4-4 115 10560 dynamic,1 1.86-1.97

16 1-1-1-8-2 115 6992 dynamic,1 3.51-3.69

32 1-1-1-8-4 131 4672 dynamic,1 3.58-3.77

Opteron 1 1-1-1-1-1 34 3497 static 2.2-2.6

2 1-1-1-2-1 36 4629 guided 1/8 3.1

2 1-2-1-1-1 36 6860 guided 1/8 3.1

4 1-2-1-2-1 36 9223 static / guided 2.9

4 1-4-1-1-1 36 13448 static / guided 2.9-3.2

8 1-4-1-2-1 40 18307 guided 1/8 2.7-2.9

Woodcrest 1 1-1-1-1-1 22 4583 static 2.6

2 1-1-1-2-1 32 4727 guided 1/8 4.0

linuxwcc00 2 1-2-1-1-1 24 7903 guided 1/8 4.8

4 1-2-1-2-1 42 7997 guided 1/8 6.50-7.00

Clovertown 1 1-1-1-1-1 24 3970 static 2.3

2 1-1-1-2-1 36 3998 guided 1/8 3.4

2 1-1-2-1-1 28 6871 guided 1/8 4.1

2 1-2-1-1-1 32 4661 guided 1/8 3.8

4 1-1-2-2-1 66 6887 guided 1/8 6.0

4 1-2-2-1-1 44 8009 guided 1/8 6.7

4 1-2-1-2-1 62 4660 guided 1/8 4.1

8 1-2-2-2-1 86 8006 guided 1/8 6.7

XeonHT 1 1-1-1-1-1 28 2559 static 1.3

2 1-1-1-1-2 42 1956 dyn/guided 1.10-1.30

2 1-2-1-1-1 44 1930 guided 1/8 1.10-1.30

4 1-2-1-1-2 90 1710 static 1.20

OpenMP on Multicore Architectures 59

the bandwidth does not increase much when using multiple threads per core.
The static schedule clearly suffers from the load imbalance whereas overhead
of the dynamic schedule is not visible. False sharing effects are not observable
due to the sharing of the on-chip L2 cache. In fact, the schedule dynamic,1
slightly outperforms the others in most cases.

XeonHT. The Pentium 4 Xeon architecture has a known memory bottleneck,
which restricts any speed-up of memory hungry parallel applications. Also the
memory transpose kernel does not profit from parallelization. When comparing
the performance of two threads running on one processor with Hyper-Threading
to two threads on two processors, it can be seen again, that sharing the caches
reduces the negative impact of false sharing. All in all, parallelization does not
pay off here.

Opteron. As we did not focus on ccNUMA effects of the quad-socket dualcore
Opteron machine here (see [1]) we let the whole matrix be allocated close to the
master thread by the default first-touch policy of the Solaris operating system.
Thus, the master thread obtains a memory bandwidth of about 2.6 GB/s. Two
threads on a single chip or on two different chips hardly experience any difference,
as both cores do not share any caches. Using a guided schedule the bandwidth
increases to 3.1 GB/s. But when using 4 or more threads the bandwidth slightly
decreases, most likely because of the saturation of the HyperTransport links. As
there is no sharing of caches, the machine is sensitive to false sharing effects,
no matter where the threads are running. Also small chunksizes hurt and the
overhead of the dynamic schedule is clearly visible. We employed large pages, as
supported by the Solaris operating system, to reduce the number of TLB misses.

Woodcrest. Both dualcore Woodcrest processors access the main memory via
a common front side bus. Whereas a single thread obtains about 2.6 GB/s band-
width and two threads distributed over the two sockets up to 5 GB/s, 4 threads
are limited to about 6.5-7 GB/s in this test case. Two threads running on the
same processor obtain some 4 GB/s.

Two threads on both processors profit from an increased bandwidth and two
caches, but they suffer from false sharing effects, when an unfavorable loop sched-
ule like dynamic,1 is employed, whereas false sharing effects are not observable,
if both threads have access to the same L2 cache.

The guided schedule delivers the best results for large matrices in all cases.
Two threads running on one processor chip perform extremely well when the
matrix fits into the shared L2 cache. If the matrix has a memory footprint of
1 MB, 2 threads on one processor (best effort: guided schedule) outperform 4
threads on 2 processors (best effort: static schedule) by more than a factor of 3.
Even a single thread is about 2 times faster than 4 threads in such a case.

Clovertown. For our investigations the Clovertown is the most interesting ar-
chitecture, as it allows to compare effects of threads sharing a cache and threads
with separate caches on the same socket. The Clovertown processor reveals sim-
ilar attitudes as the Woodcrest processor in that each pair of two cores share

60 C. Terboven, D. Mey, and S. Sarholz

the same L2 cache, such that threads sharing one cache, don’t suffer from false
sharing and perform extremely well if the matrix fits into that cache. Other than
that, two threads on cores of one socket which do not share the L2 cache perform
very similar to two threads on cores of two different sockets. The guided sched-
ule is preferable for large matrices and a small chunksize leads to false sharing
if more than one L2 cache is involved.

4 Application Performance

4.1 Sparse Matrix-Vector-Multiplication

A sparse matrix vector product is the most time consuming part in CG-type
linear equation solvers, as used in many PDE solvers. Compared to dense linear
algebra functions, the data structure used to exploit the matrix sparsity pattern
typically adds one level of indirection to the operation.

Here, we used the sparse matrix vector multiplication kernel and the matrices
of the C++ Navier-Stokes solver DROPS [1]. A lot of effort has been invested
to tune and parallelize this kernel on several different architectures. We com-
pare two matrix sizes: A large matrix with 19,593,418 nonzeros in 23,334 rows
taking about 150 MB of memory and a small matrix with 784,075 nonzeros in
11,691 rows taking about 6 MB of memory. Table 3 shows selected performance
measurements of this benchmark.

Table 3. Sparse Matrix Vector Multiplication

Sockets- Sockets-
Abbrev. #Threads Chips-Cores- MFLOP/s Abbrev. #Threads Chips-Cores- MFLOP/s

Threads large / small Threads large / small

USIV 1 1-1-1-1 141.0 / 203.6 Woodcrest 1 1-1-1-1 557.4 / 633.2
2 1-1-2-1 274.8 / 426.4 2 2-1-1-1 872.9 / 1442
2 2-1-1-1 243.7 / 418.8 2 1-1-2-1 643.5 / 776.9
4 2-1-2-1 423.8 / 821.6 4 2-1-2-1 951.3 / 2147

Opteron 1 1-1-1-1 371.8 / 383.0 XeonHT 1 1-1-1-1 400.0 / 429.4
2 1-1-2-1 643.5 / 669.1 2 1-1-1-2 442.5 / 445.1
2 2-1-1-1 721.6 / 743.9 2 2-1-1-1 413.0 / 391.7
4 2-1-2-1 1200 / 1254 4 2-1-1-2 293.1 / 279.4

Clovertown 1 1-1-1-1 495.2 / 564.6 Niagara 1 1-1-1-1 40.0 / 41.2
2 1-2-1-1 764.3 / 1420 2 1-1-1-2 72.3 / 75.3
2 2-1-1-1 622.5 / 1338 2 1-1-2-1 77.6 / 81.0
2 1-1-2-1 563.9 / 641.3 4 1-1-1-4 118.1 / 122.2
4 2-2-1-1 902.9 / 4798 4 1-1-4-1 149.9 / 157.5
4 2-1-2-1 632.6 / 1112 8 1-1-8-1 292.2 / 309.0
4 1-2-2-1 807.9 / 1943 16 1-1-8-2 520.2 / 544.8
8 2-2-2-1 913.2 / 9340 32 1-1-8-4 739.8 / 678.1

– USIV: There is no visible performance difference in using two threads on two
different sockets or on one socket with two cores, as each core has its own
cache. One can notice a super-linear speedup with two threads for the small
dataset as the matrix and the vectors then fit into the two L2 caches.

OpenMP on Multicore Architectures 61

– Opteron: Using two threads on two different sockets is faster than on two
cores on one socket, as the threads already can saturate the local memory
bandwidth of one socket.

– Woodcrest: Because two cores in one chip on one socket share the L2 cache,
thread placement has a strong impact on performance. By using two cores on
one socket for two threads, the performance increase is quite small compared
to using just one thread. If two threads on two different sockets can utilize
one full L2 cache each, super-linear speedup can be observed.

– Clovertown: The variation in performance depending on the thread place-
ment is drastic. Placing two threads on the two cores of a chip results in a
speedup of only 1.14 while placing them onto two chips on the same socket
results in a speedup of 1.54, for the large dataset. The Clovertown really
mimics the behavior of a two socket Woodcrest system. If the matrix fits
into the caches, one can see a super-linear speedup of 16 using 8 threads.

– XeonHT: Hyper-Threading is slightly profitable, as computation and wait-
ing for data to arrive from memory can be overlapped, but it is far less
efficient than CMT as implemented in the Niagara processor. The path to
the memory, which is shared by both sockets, prevents scalability.

– Niagara: On the Niagara processor, we ran a modified version of the bench-
mark, replacing the 64bit double data type by 64bit integer. On this archi-
tecture, CMT proves to be profitable. As the L2 cache is shared by all cores,
the performance for the small and the large dataset is about the same. Using
32 threads the large dataset shows a higher scalability than the small one,
as the ratio of time waiting for the memory to time spent in computation
increases.

In a multi-user environment an application may run on an unsymmetric part
of a machine, which may heavily impact performance. We tried to simulate
such a situation by using 5 threads on a Clovertown processor. Then there are
two threads running on one chip and sharing the available cache and memory
bandwidth. It turned out, that in such a situation the performance can be im-
proved from 2216.5 MFLOP/s to 4276.3 MFLOP/s when replacing the original
static,128 schedule by a dynamic schedule!

As the Niagara processor has just one cache, the architecture is much more
symmetric and the difference between sharing one core by multiple threads and
using one core exclusively is far less significant.

4.2 Contact Analysis of Bevel Gears

In the Laboratory for Machine Tools and Production Engineering of the RWTH
Aachen University, the contact of bevel gears is simulated and analyzed in order
to e.g. understand the deterioration of differential gears as they are used in car
gearboxes. These simulations usually run for a few days when using the original
serial code. The program was parallelized using OpenMP and it turned out that
it scales quite well on multicore architectures, as it is very cache friendly. The
parallel code versions consists of some 90,000 lines of Fortran90 code containing
5 parallel OpenMP regions and 70 OpenMP directives.

62 C. Terboven, D. Mey, and S. Sarholz

Table 4. Runtime and Speedup of bevel gear contact analysis

Sockets-Chips- USIV Opteron Woodcrest Clovertown XeonHT

Cores-Threads Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup

1-1-1-1 276.33 1.0 57.96 1.0 36.02 1.0 48.1 1.0 180.55 1.0

1-1-1-2 - - - - - - - - 175.43 1.03

1-1-2-1 161.62 1.71 34.91 1.66 21.71 1.66 28.1 1.71 - -

1-2-1-1 - - - - - - 28.1 1.71 - -

2-1-1-1 162.95 1.70 34.79 1.67 21.73 1.66 28.0 1.72 116.75 1.55

2-1-1-2 - - - - - - - - 116.00 1.56

1-2-2-1 - - - - - - 16.1 2.99 - -

2-1-2-1 90.87 3.04 20.25 2.86 14.64 2.46 16.1 2.99 - -

2-2-1-1 - - - - - - 16.47 3.01 - -

4-1-1-1 91.25 3.03 20.11 2.88 - - - - - -

2-2-2-1 - - - - - - 10.0 4.81 - -

4-1-2-1 51.86 5.33 12.43 4.66 - - - - - -

Table 4 shows that the application scales rather well on all machines. Only
Hyper-Threading on the Xeon machine does not pay off. For such a cache friendly
application the multicore architectures work very well and thread placement
effects are neglectable.

4.3 Simulation of Deformable Objects in VR

In order to meat the real time requirement of a physically based simulation in
the context of an interactive virtual environment, in [2] three versions of an
FEM solver were parallelized with OpenMP and the scalability on the Opteron,
Woodcrest and Clovertown processors have been analyzed. It turned out that this
application profits from the L2 caches which are shared by two cores each. On
the Opteron synchronization between threads has to involve the main memory,
and therefore the speedup is not as good as the speedup of the Clovertown (see
figure 1). The best achievable speedup was 6.5 with 8 threads on the Clovertown
system.

(a) Runtime in seconds for 5 seconds sim-
ulation time (red line).

(b) Corotational FEM: Speedup.

Fig. 1. Speedup of Deformable Object Simulation

OpenMP on Multicore Architectures 63

4.4 ThermoFlow

The Finite Element CFD solver has been developed at the Jet Propulsion Lab-
oratory at the RWTH Aachen University to simulate heat transfer in rocket
combustion chambers. The current OpenMP code version has 29,000 lines of
Fortran and 69 parallel loops with the whole compute intense part contained in
one parallel region. Addressing long vectors continuously as well as indirectly
heavily stresses the memory system. Whereas the large Sun Fire SMP systems,
which have been the target architecture for this code version, have a scalable
memory system (see [3]), the new Intel and AMD multicore processors show only
a limited speedup.

Table 5. Runtime and Speedup of ThermoFlow and TFS

Sockets- ThermoFlow TFS
Architecture #Threads Chips-Cores- Runtime Speedup Runtime Speedup

Threads [sec] [sec]

USIV 1 1-1-1-1 66.4 1.0 33.6 1.0
2 1-1-2-1 42.8 1.55 18.8 1.79
2 2-1-1-1 42.2 1.57 18.9 1.78
4 2-1-2-1 28.9 2.30 11.4 2.95

Opteron 1 1-1-1-1 29.2 1.0 14.3 1.0
2 1-1-2-1 20.7 1.41 11.6 1.23
2 2-1-1-1 18.5 1.58 11.6 1.23
4 2-1-2-1 13.6 2.15 8.7 1.64

Woodcrest 1 1-1-1-1 20.1 1.0 10.0 1.0
2 2-1-1-1 15.0 1.34 6.0 1.67
2 1-1-2-1 16.1 1.25 8.0 1.25
4 2-1-2-1 13.0 1.55 5.0 2.0

Clovertown 1 1-1-1-1 23.1 1.0 11.1 1.0
2 1-2-1-1 17.0 1.36 7.0 1.59
2 1-1-2-1 19.0 1.22 9.1 1.22
2 2-1-1-1 17.1 1.35 8.0 1.39
4 2-2-1-1 13.1 1.76 4.1 2.71
4 2-1-2-1 15.1 1.53 7.1 1.56
4 1-2-2-1 14.1 1.64 6.0 1.85
8 2-2-2-1 13.0 1.78 4.1 2.71

4.5 The Navier Stokes Solver TFS

The Navier Stokes Solver TFS is a toolkit for CFD simulations developed at
the Aerodynamic Institute of the RWTH Aachen University (see [4]). Here we
run a benchmark version, which has been parallelized on the inner loop level.
As the 3-dimensional computational grid is mapped to 1-dimensional arrays,
frequent consecutive accesses to such long vector flush the caches and consume a
high memory bandwidth. Like in chapter 4.4, the USIV processor shows better
speed-up than the other architectures. Here, two threads sharing one common

64 C. Terboven, D. Mey, and S. Sarholz

cache of the Intel processors display a decent speedup. As the memory access is
the bottleneck, 8 cores of the Clovertown do not perform better than 4 cores.

5 Conclusion

From the perspective of the application programmer, a multicore processor is
an SMP on a chip and OpenMP programs just run nicely. Of course there is a
lot more sharing of resources compared to previous SMP systems, which may
heavily impact performance. The cache architecture plays a major role. Sharing
of caches can be a major advantage, as has been shown in chapters 3.2 and
4.3, where false sharing effects might disappear under lucky circumstances. On
the other hand, the memory bandwidth bottleneck is getting even worse with
more cores demanding more data, thus limiting the speed-up of memory hungry
OpenMP application programs (see chapters 4.5 and 4.4).

Experiences with chip multi-threading have been reported at least since Intel
introduced Hyper-Threading and in many cases the speedup gain was quite
limited. On the Sun UltraSPARC T1 processor we observed that CMT can be
implemented more efficiently (see chapter 3).

The optimal choice for loop scheduling may heavily depend on the machine
architecture, on the machine load and on the placement of threads onto the cores.
This is a strength of OpenMP, as changing the schedule just means setting
another keyword into the schedule clause. Thus it might be convenient to be
able to change the schedule runtime not only by an environment variable, but
also by a runtime call. An additional self tuning schedule, which would allow
the OpenMP runtime system to dynamically adapt the schedule over time, is
desirable.

Future Work. Plans for future work include looking at additional processors:
IBM’s Power5 and Intel’s Itanium2. Furthermore we want to experiment with
self adaptive scheduling schemes, which may be profitable in a multi-user envi-
ronment.

References

1. Terboven, C., Spiegel, A., an Mey, D., Gross, S., Reichelt, V.: Parallelization of the
C++ Navier-Stokes Solver DROPS with OpenMP. In: Proc. ParCo 2005, Malaga,
Spain, September 2005. NIC book series, Research Centre Jülich, Germany, vol. 33
(2005)

2. Jerabkova, L., Terboven, C., Sarholz, S., Kuhlen, T., Bischof, C.: Exploiting Multi-
core Architectures for Physically Based Simulation of Deformable Objects in Virtual
Environments. In: 4th workshop on Virtuelle und erweiterte Realität, Weimar, Ger-
many (July 2007) (accepted)

3. an Mey, D., Haarmann, T.: Pushing Loop-Level Parallelization to the Limit. In:
EWOMP 2002, Rome, Italy (September 2002)

4. Hörschler, I., Meinke, M., Schröder, W.: Numerical simulation of the flow field in a
model of the nasal cavity. Computers & Fluids 32, 3945 (2003)

Supporting OpenMP on Cell

Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen, and Tao Zhang

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract. The Cell processor is a heterogeneous multi-core processor
with one Power Processing Engine (PPE) core and eight Synergistic Pro-
cessing Engine (SPE) cores. Each SPE has a directly accessible small
local memory (256K), and it can access the system memory through
DMA operations. Cell programming is complicated both by the need to
explicitly manage DMA data transfers for SPE computation, as well as
the multiple layers of parallelism provided in the architecture, including
heterogeneous cores, multiple SPE cores, multithreading, SIMD units,
and multiple instruction issue. There is a significant amount of ongo-
ing research in programming models and tools that attempts to make it
easy to exploit the computation power of the Cell architecture. In our
work, we explore supporting OpenMP on the Cell processor. OpenMP
is a widely used API for parallel programming. It is attractive to sup-
port OpenMP because programmers can continue using their familiar
programming model, and existing code can be re-used. We base our
work on IBM’s XL compiler, which already has OpenMP support for
AIX multi-processor systems built with Power processors. We developed
new components in the XL compiler and a new runtime library for Cell
OpenMP that utilizes the Cell SDK libraries to target specific features of
the new hardware platform. To describe the design of our Cell OpenMP
implementation, we focus on three major issues in our system: 1) how
to use the heterogeneous cores and synchronization support in the Cell
to optimize OpenMP threads; 2) how to generate thread code targeting
the different instruction sets of the PPE and SPE from within a com-
piler that takes single-source input; 3) how to implement the OpenMP
memory model on the Cell memory system. We present experimental
results for some SPEC OMP 2001 and NAS benchmarks to demonstrate
the effectiveness of this approach. Also, we can observe detailed runtime
event sequences using the visualization tool Paraver, and we use the in-
sight into actual thread and synchronization behaviors to direct further
optimizations.

1 Introduction

The Cell Broadband EngineTM (Cell BE) processor [8] is now commercially
available in both the Sony PS3 game console and the IBM Cell Blade which
represents the first product on the IBM Cell Blade roadmap. The anticipated
high volumes for this non-traditional “commodity” hardware continue to make it
interesting in a variety of different application spaces, ranging from the obvious
multi-media and gaming domain, through the HPC space (both traditional and

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 65–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

66 K. O’Brien et al.

commercial), and to the potential use of Cell as a building block for very high
end “supercomputing” systems [11].

This first generation Cell processor provides flexibility and performance with
the inclusion of a 64-bit multi-threaded Power ProcessorTM Element (PPE) with
two levels of globally-coherent cache and support for multiple operating systems
including Linux. For additional performance, a Cell processor includes eight Syn-
ergistic Processor Elements (SPEs), each consisting of a Synergistic Processing
Unit (SPU), a local memory, and a globally-coherent DMA engine. Computa-
tions are performed by 128-bit wide Single Instruction Multiple Data (SIMD)
functional units. An integrated high bandwidth bus, the Element Interconnect
Bus (EIB), glues together the nine processors and their ports to external memory
and IO, and allows the SPUs to be used for streaming applications [9].

Data is transferred between the local memory and the DMA engine [13] in
chunks of 128 bytes. The DMA engine can support up to 16 concurrent requests
of up to 16K bytes originating either locally or remotely. The DMA engine is
part of the globally coherent memory address space; addresses of local DMA
requests are translated by a Memory Management Unit (MMU) before being
sent on the bus. Bandwidth between the DMA and the EIB bus is 8 bytes per
cycle in each direction. Programs interface with the DMA unit via a channel
interface and may initiate blocking as well as non-blocking requests.

Programming the SPE processor is significantly enhanced by the availability of
an optimizing compiler which supports SIMD intrinsic functions and automatic
simdization [6]. However, programming the Cell processor, the coupled PPE
and 8 SPE processors, is a much more complex task, requiring partitioning of
an application to accommodate the limited local memory constraints of the
SPE, parallelization across the multiple SPEs, orchestration of the data transfer
through insertion of DMA commands, and compiling for two distinct ISAs. Users
can directly develop the code for PPE and SPE, or introduce new language
extensions [10].

In this paper we describe how our compiler manages this complexity while
still enabling the significant performance potential of the machine. Our parallel
implementation currently uses OpenMP APIs to guide parallelization decisions.

The remainder of the paper is laid out as follows: section two gives an overview
of the compiler infrastructure upon which our work is based and presents the
particular challenges of retargeting this to the novel features of the Cell plat-
form. The next three sections of the paper look in more depth at each of these
challenges and how we have addressed them, and section 6 presents some ex-
perimental results to demonstrate the benefit of our approach. We draw our
conclusions in the last section.

2 System Overview

In our system, we use compiler transformations in collaboration with a runtime
library to support OpenMP. The compiler translates OpenMP pragmas in the
source code to intermediate code that implements the corresponding OpenMP
construct. This translated code includes calls to functions in the runtimelibrary.

Supporting OpenMP on Cell 67

The runtime library functions provide basic utilities for OpenMP on the Cell pro-
cessor, including thread management, work distribution, and synchronization.
For each parallel construct, the compiler outlines the code segment enclosed in
the parallel construct into a separate function. The compiler inserts OpenMP
runtime library calls into the parent function of the outlined function. These
runtime library calls will invoke the outlined functions at runtime and manage
their execution.

The compiler is built upon the IBM XL compiler [1][7]. This compiler has
front-ends for C/C++ and Fortran, and shares the same optimization frame-
work across multiple source languages. The optimization framework has two
components: TPO and TOBEY. Roughly, TPO is responsible for high-level
and machine-independent optimizations while TOBEY is responsible for low-
level and machine-specific optimizations. The XL compiler has a pre-existing
OpenMP runtime library and support for OpenMP 2.0 on AIX multiprocessor
systems built with Power processors. In our work targeting the Cell platform, we
re-use, modify, or re-write existing code that supports OpenMP as appropriate.

We encountered several issues in our OpenMP implementation that are spe-
cific to features of the Cell processor:

• Threads and synchronization: Threads running on the PPE differ in capabil-
ity and processing power from threads running on the SPEs. We design our
system to use these heterogeneous threads, and to efficiently synchronize all
threads using specialized hardware support provided in the Cell processor.

• Code generation: The instruction set of the PPE differs from that of the SPE.
Therefore, we perform code generation and optimization for PPE code sepa-
rate from SPE code. Furthermore, due to the limited size of SPE local stores,
SPE code may need to be partitioned into multiple overlaid binary sections
instead of generating it as a large monolithic section. Also, shared data in
SPE code needs to be transferred to and from system memory using DMA,
and this is done using DMA calls explicitly inserted by the compiler, or using
a software caching mechanism that is part of the SPE runtime library.

• Memory model: Each SPE has a small directly accessible local store, but it
needs to use DMA operations to access system memory. The Cell hardware
ensures DMA transactions are coherent, but it does not provide coherence for
data residing in the SPE local stores. We implement the OpenMP memory
model on top of the novel Cell memory model, and ensure data in system
memory is kept coherent as required by the OpenMP specification.

In the following sections, we describe how we solve these issues in our compiler
and runtime library implementation.

3 Threads and Synchronization

In our system, OpenMP threads execute on both the PPE and the SPEs. The
master thread is always executed on the PPE. The master thread is responsible
for creating threads, distributing and scheduling work, and initializing synchro-
nization operations. Since there is no operating system support on the SPEs,

68 K. O’Brien et al.

this thread also handles all OS service requests. The functions specific to the
master thread align well with the Cell design of developing the PPE as a proces-
sor used to manage the activities of multiple SPE processors. Also, placing the
master thread on the PPE allows smaller and simpler code for the SPE runtime
library, which resides in the space-constrained SPE local store. Different from
the OpenMP standard, if required by users, the PPE thread will not participate
in the work for parallel loops.

Currently, we always assume a single PPE thread and specify the number of
SPE threads using OMP NUM THREADS. Specifying the number of PPE and
SPE threads separately will need an extension of the OpenMP standard. The
PPE and SPE cores are heterogeneous, and there may be significant performance
mismatch between a PPE thread and an SPE thread that perform the same work.
Ideally, the system can be built to automatically estimate the difference in PPE
and SPE performance for a given work item, and then have the runtime library
appropriately adjust the amount of work assigned to different threads. We do not
have such a mechanism yet, so we allow users to tune performance by specifying
whether or not the PPE thread should participate in executing work items for
OpenMP work-share loops or work-share sections.

We implement thread creation and synchronization using the Cell Software
Development Kit (SDK) [4]. The PPE master thread creates SPE threads only
when a parallel structure is first encountered at runtime. For nested parallelism,
each thread in the outer parallel region sequentially executes the inner region.
The PPE thread schedules tasks for all threads, using simple block scheduling for
work-share loops and sections. The work sections or loop iterations are divided
into as many pieces as the number of available threads, and each thread is
assigned one piece. More sophisticated scheduling is left for future work.

When an SPE thread is created, it performs some initialization, and then
loops waiting for task assignments from the PPE, executing those tasks, and
then waiting for more tasks, until the task is to terminate. A task can be the
execution of an outlined parallel region, loop or section, or performing a cache
flush, or participating in barrier synchronization. There is a task queue in system
memory corresponding to each thread. When the master thread assigns a task to
a thread, it writes information about the task to the corresponding task queue,
including details such as the task type, the lower bound and upper bound for
a parallel loop, and the function pointer for an outlined code region that is to
be executed. Once an SPE thread has picked up a task from the queue, it uses
DMA to change the status of the task in the queue, thus informing the master
thread that the queue space can be re-used.

The Cell processor provides special hardware mechanisms for efficient com-
munication and synchronization between the multiple cores in a Cell system.
The Memory Flow Controller (MFC) for each SPE has two blocking outbound
mailbox queues, and one non-blocking inbound mailbox queue. These mailboxes
can be used for efficient communication of 32-bit values between cores. When
the master thread assigns tasks to an SPE thread, it uses the mailbox to inform
the SPE of the number of tasks available for execution. Each SPE MFC also

Supporting OpenMP on Cell 69

has an atomic unit that implements atomic DMA commands and provides four
128-byte cache lines that are maintained cache coherent across all processors.
We use atomic DMA commands for efficient implementation of OpenMP locks,
barriers1, and cache flush operations.

4 Code Generation

Figure 1 illustrates the code generation process of the Cell OpenMP compiler. The
compiler separates out each code region in the source code that corresponds to an
OpenMP parallel construct (including OpenMP parallel regions, work-share loops
or work-share sections, and single constructs), and outlines it into a separate func-
tion. The outlined function may take additional parameters such as the lower and
the upper bounds of the loop iteration for parallel loops. In the case of parallel
loops, the compiler further transforms the outlined function so that it only com-
putes from the lower bound to the upper bound. The compiler inserts an OpenMP
runtime library call into the parent function of the outlined function, and passes

Fig. 1. Code generation process

1 We thank Daniel Brokenshire (IBM Austin) for his implementation of barriers on
Cell.

70 K. O’Brien et al.

a pointer to the outlined function code into this runtime library function. During
execution, the runtime function will indirectly invoke the outlined function. The
compiler also inserts synchronization operations such as barriers when necessary.

Due to the heterogeneity of the Cell architecture, the outlined functions con-
taining parallel tasks may execute on both the PPE and the SPEs. In our im-
plementation, we clone the outlined functions so that there is one copy of the
function for the PPE architecture, and one for the SPE architecture. We per-
form cloning during TPO link-time optimization when the global call graph is
available, so we can clone the whole sub-graph for a call to an outlined func-
tion when necessary. We mark the cloned function copies as PPE and SPE
procedures, respectively. In later stages of compilation, we can apply machine-
dependent optimizations to these procedures based on their target architecture.
Auto-simdization is one example. SPE has SIMD units that can execute oper-
ation on 128 byte data with one instruction. After cloning, the code for SPE
will undergo the auto-simdization to transform scalar code into SIMD code for
SPE, while the PPE has totally different SIMD instructions. In other words, we
choose to clone the functions to enable more aggressive optimizations.

When a PPE runtime function in the master thread distributes parallel work
to an SPE thread, it needs to tell the SPE thread what outlined function to
execute. The PPE runtime function knows the function pointer for the PPE
code of the outlined function to execute. However, the SPE thread needs to use
the function pointer for the SPE code of the same outlined function. To enable
the SPE runtime library to determine correct function pointers, the compiler
builds a mapping table between corresponding PPE and SPE outlined function
pointers, and the runtime looks up this table to determine SPE code pointers
for parallel tasks assigned by the master thread.

At the end of TPO, procedures for different architectures are separated into
different compilation units, and these compilation units are processed one at a
time by the TOBEY backend. The PPE compilation units are processed as for
other architectures and need no special consideration. However, if a single large
SPE compilation unit is generated, it may result in SPE binary code that is too
large to fit in the small SPE local store all at once. In fact, we observe this to
be the case for many benchmark programs. For OpenMP, one way to mitigate
this problem is to place all the code corresponding to a given parallel region
in one SPE compilation unit, and generate as many SPE compilation units as
there are parallel regions in the program. Using this approach, we can generate
multiple SPE binaries, one for each SPE compilation unit. We can then modify
the runtime library to create SPE threads using a different SPE binary on entry
to each parallel region. However, there are two drawbacks to using this approach:
first, an individual parallel region may still be too large to fit in SPE local store,
and second, we observe through experiments that the overhead for repeatedly
creating SPE threads is significantly high.

To solve the SPE code size problem, we rely on the technique of call graph
partitioning and code overlay. We first partition the sub-graph of the call graph
corresponding to SPE procedures into several partitions. Then we create a code

Supporting OpenMP on Cell 71

overlay for each call graph partition. Code overlays share address space and do
not occupy local storage at the same time. Thus, the pressure on local storage
due to SPE code is greatly reduced. To partition the call graph, we weight each
call graph edge by the frequency of this edge. The frequency can be obtained
by either compiler static analysis or profiling. Then we apply the maximum
spanning tree algorithm to the graph. Basically, we process edges in the order of
their weight. If merging the two nodes of the edge does not exceed a predefined
memory limitation, we merge those two nodes, update the edge weights, and
continue. When the algorithm stops, each merged node represents a call graph
partition comprising all the procedures whose nodes were merged into that node.
Thus, the result is a set of call graph partitions. Our algorithm is a simple
greedy algorithm that can be further optimized. After call graph partitions are
identified, we utilize SPU code overlay support introduced in Cell SDK 2.0 and
place the procedures in each call graph partition into a separate code overlay.

After the TOBEY backend generates an SPE binary (either with or without
code overlays), we use a special tool called ppu-embedspu to embed the SPE
binary into a PPE data object. This PPE data object is then linked into the final
PPE binary together with other PPE objects and libraries. During execution,
when code running on the PPE creates SPE threads, it can access the SPE
binary image embedded into the PPE data object, and use this SPE image to
initialize the newly created SPE threads.

5 Memory Model

OpenMP specifies a relaxed-consistency, shared-memory model. This model al-
lows each thread to have its own temporary view of memory. A value written
to or read from a variable can remain in the thread’s temporary view until it
is forced to share memory by an OpenMP flush operation. We find that such a
memory model can be efficiently implemented on the Cell memory structure.

In the Cell processor, each SPE has just 256K directly accessible local memory
for code and data. We only allocate private variables accessed in SPE code to
reside in the SPE local store. Shared variables reside in system memory, and
SPE code can access them through DMA operations. We use two mechanisms
for DMA transfers: static buffering and compiler-controlled software cache. In
both mechanisms, the global data may have a local copy in the SPE local store.
The SPE thread may read and write the local copy. This approach conforms
to the OpenMP relaxed memory model and takes advantage of the flexibility
afforded by the model to realize memory system performance.

Some references are regular references from the point-of-view of our compiler
optimization. These references occur within a loop, the memory addresses that
they refer to can be expressed using affine expressions of loop induction variables,
and the loop that contains them has no loop-carried data dependence (true,
output or anti) involving these references. For such regular reference accesses
to shared data, we use a temporary buffer in the SPE local store. For read
references, we initialize this buffer with a DMA get operation before the loop

72 K. O’Brien et al.

executes. For write references, we copy the value from this buffer using a DMA
put operation after the loop executes. The compiler statically generates these
DMA get and put operations. The compiler also transforms the loop structure
in the program to generate optimized DMA operations for references that it
recognizes to be regular. Furthermore, DMA operations can be overlapped with
computations by using multiple buffers. The compiler can choose the proper
buffering scheme and buffer size to optimize execution time and space [9].

For irregular references to shared memory, we use a compiler-controlled soft-
ware cache to read/write the data from/to system memory. The compiler replaces
loads and stores using these references with instructions that explicitly look up
the effective address in a directory of the software cache. If a cache line for the
effective address is found in the directory (which means a cache hit), the value
in the cache is used. Otherwise, it is a cache miss. For a miss, we allocate a line
in the cache either by using an empty line or by replacing an existing line. Then,
for a load, we issue a DMA get operation to read the data from system memory.
For stores, we write the data to the cache, and maintain dirty bits to record which
byte is actually modified. Later, we write the data back to system memory using a
DMA put operation, either when the cache line is evicted to make space for other
data, or when a cache flush is invoked in the code based on OpenMP semantics.

We configure the software cache based on the characteristics of the Cell proces-
sor. Since 4-way SIMD operations on 32-bit values are supported in the SPE and
we currently use 32-bit memory addresses, we use a 4-way associative cache that
performs the cache lookup in parallel. Also, we use 128-byte cache lines since DMA
transfers are optimal when performed in multiples of 128 bytes and aligned on a
128- byte boundary. If only some bytes in a cache line are dirty, when the cache line
is evicted or flushed, the data contained in it must be merged with system memory
such that only the dirty bytes overwrite data contained in system memory. One
way to achieve this is to DMA only the dirty bytes and not the entire cache line.
However, this may result in small discontinuous DMA transfers, and exacerbated
by the alignment requirements for DMA transfers, it can result in poor DMA per-
formance. Instead, we use the support for atomic updates of 128-byte lines that is
provided in the SPE hardware to atomically merge data in the cache line with data
in the corresponding system memory, based on recorded dirty bits.

When an OpenMP flush is encountered, the compiler guarantees that all data
in the static buffers in local store has been written back into memory, and that
existing data in the static buffers is not used any further. The flush will also trig-
ger the software cache to write back all data with dirty bits to system memory,
and to invalidate all lines in the cache.

When an SPE thread uses DMA to get/put data from/to the system memory,
it needs to know the address of the data to transfer. However, global data is linked
with the PPE binary and is not directly available in SPE code. The Cell SDK
provides a link-time mechanism called CESOF, that makes available to the SPE
binary the addresses of all PPE global variables after these addresses have been
determined. We use a facility similar to CESOF when generating SPE code.

Supporting OpenMP on Cell 73

Besides global data, an SPE thread may need to know the address of data
on the PPE stack when, in source code, the procedure executing in the SPE
thread is nested within a procedure executing in a PPE thread, and the SPE
procedure accesses variables declared in its parent PPE procedure. Though C
and Fortran do not support nested procedures (C++ and Pascal do), this case
can occur when the compiler performs outlining. For example, in Figure 1, if the
variable “x” were declared in the procedure that contains the parallel loop, after
outlining, the declaration of “x” becomes out of the scope of the outlined func-
tion. To circumvent this problem, the compiler considers each outlined function
to be nested within its parent function. The PPE runtime, assisted by compiler
transformations, ensures that SPE tasks that will access PPE stack variables are
provided with the system memory address of those stack variables.

6 Experimental Results

We compiled and executed some OpenMP test cases on a Cell blade that has
both the PPU and the SPUs running at 3.2 GHz, and has a total of 1GB main
memory. All our experiments used one Cell chip: one PPE and eight SPEs. The
test cases include several simple streaming applications, as well as the standard
NAS [2] and SPEC OMP 2001 [5] benchmarks. To observe detailed runtime
behavior of applications, we instrumented the OpenMP runtime libraries with
Paraver [3], a trace generation and visualization tool.

Figure 2 shows the PPE and SPE thread behavior for a small test case com-
prising of one parallel loop that is repeatedly executed one hundred times. The
PPE thread is assigned no loop iterations, and is responsible only for scheduling
and synchronization. The figure shows a high-level view of one complete exe-
cution of the parallel loop. The first row corresponds to the PPE thread and
the remaining rows correspond to SPE threads. Blue areas represent time spent
doing useful computation, yellow areas represent time spent in scheduling and
communication of work items, and red areas represent time spent in synchroniza-
tion and waiting for DMA operations to complete. We can clearly identify the
beginning and end of one instance of a parallel loop execution from the neatly
lined up set of red synchronization areas that indicate the implicit barriers being
performed at parallel region boundaries, as specified by the OpenMP standard.

Fig. 2. PPE and SPE thread

74 K. O’Brien et al.

Fig. 3. Data transfer with software cache and static buffer

If we zoom into a portion of the SPE useful computation shown in Figure 2,
we can see in greater detail the time actually spent in computing and the time
spent in waiting for data transfers. Figure 3(a) shows this detail for a segment of
execution when only the software cache is used for automatic DMA transfers. We
see many areas in the SPE execution that are dominated by waiting for DMA
operations to complete (red areas), and the need to optimize this application is
evident. Figure 3(b) shows a similar segment of execution for the same applica-
tion when it has been optimized using static buffering. We observe the improved
ratio for time spent doing actual computation (blue) versus time spent waiting
for DMA operations (red).

To evaluate our approach, we first tried some simple stream benchmarks,
comparing the performance of code generated by our compiler with the perfor-
mance of manually written code that was optimized using Cell SDK libraries
and SIMD instructions. The performance comparison is shown in Figure 4. The
speedups shown in this figure are the ratios of execution time when using 8 SPUs
and execution time when only using the PPE. Both SIMD units and multiple
cores contribute to the speedups observed. We observe that our OpenMP com-
piler can achieve as good a performance (except for fft) as the highly optimized
manual code on these stream applications. fft performs poorly in comparison be-
cause auto-simdization cannot handle different displacements in array subscript
expressions for different steps in the FFT computation. Manual code performs
slightly better on dotproduct and xor because the compiler does not unroll the
loop an optimal number of times.

We also experimented with some applications from the NAS and Spec OMP
2001 benchmark suites. We report speedups of the whole program normalized
to one PPU and one SPU respectively in Figure 5.

Supporting OpenMP on Cell 75

Fig. 4. Performance comparison with manually optimized code

Fig. 5. Performance of benchmarks

Compared to the performance of one PPU, many applications show signifi-
cant speedup with our compiler on 8 SPUs. The performance of some others is
unsatisfactory, or even quite bad (such as equake, CG and FT). We analyzed the
benchmarks and traced compiler transformations to determine the reasons for
the performance shortfall. We identified two main reasons for it:

1. Limitations in our current implementation: A common reason for bad perfor-
mance is the failure of static buffer optimization. Our current implementation
cannot handle references complicated by loop unrolling, done either by the
user or the compiler. The absence of precise alias information also prevents
static buffering from being applied in many test cases. We are working on
improving our compiler.

2. Applications unsuitable for the Cell architecture: FT and CG contain ir-
regular discontinuous data references to main memory. DMA data transfers
become the bottleneck in such cases.

The performance normalized to one SPU shows the scalability. Except IS and
equake, all show good scalability with speedup more than 6 on 8 SPUs. IS does
not scale up well because it performs some computation within a master pragma
or critical pragma. These computations are done sequentially. For equake, some

76 K. O’Brien et al.

loops are not parallelized due to limitations of the current compiler implemen-
tation. Therefore, its speedup of 8 SPUs is only above 4.

7 Conclusions

In this paper, we describe how to support OpenMP on the Cell processor. Our
approach allows users to simply reuse their existing OpenMP applications on the
powerful Cell Blade, or easily develop new applications with the OpenMP API
without worrying about the hardware details of the Cell processor. We support
OpenMP by orchestrating compiler transformations with a runtime library that
is tailored to the Cell processor. We focus on issues related to three topics: thread
and synchronization, code generation, and the memory model. Our compiler is
novel in that it generates a single binary that executes across multiple ISAs and
multiple memory spaces.

Experiments with simple test cases demonstrate that our approach can achieve
performance similar to that of manually optimized code. We also experimented
with some large, complex benchmark codes. Some of these benchmarks show sig-
nificant performance gains. Thus, we demonstrate that it is feasible to extract
high performance on a Cell processor using the simple and easy-to-use OpenMP
programming model. However, we need to further improve our compiler imple-
mentation for improved performance on a wider set of application programs.

References

1. IBM XL Compiler for the Cell BE,
http://www.alphaworks.ibm.com/tech/cellcompiler

2. NAS parallel benchmarks,
http://www.nas.nasa.gov/Resources/Software/npb.html

3. Paraver, http://www.cepba.upc.es/paraver
4. SDK for Cell, http://www-128.ibm.com/developerworks/power/cell
5. Spec OMP benchmarks, http://www.spec.org
6. Eichenberger, A., et al.: Vectorization for SIMD Architecture with Alignment Con-

straints. Programming Language Design and Implementation (PLDI) (2003)
7. Eichenberger, A., et al.: Optimizing Compiler for the Cell Processor. In: Conference

on Parallel Architecture and Compiler Techniques (PACT) (2005)
8. Pham, D., et al.: The design and implementation of a first-generation cell processor.

In: IEEE International Solid-State Circuits Conference (ISSCC) (February 2005)
9. Gordon, M., et al.: Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism

in Stream Programs. In: International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (October 2006)

10. Bellens, P., et al.: CellSs: a Programming Model for the Cell BE Architecture.
Supercomputing (SC) (2006)

11. Williams, S., et al.: The Potential of the Cell Processor for Scientific Computing.
In: Conference on Computing Frontiers (2006)

12. Chen, T., et al.: Optimizing the use of static buffers for DMA on a CELL chip. In:
Almási, G.S., Caşcaval, C., Wu, P. (eds.) KSEM 2006. LNCS, vol. 4382. Springer,
Heidelberg (2007)

13. Kistler, M., Perrone, M., Petrini, F.: CELL multiprocessor communication network:
Built for Speed. IEEE Micro 26(3) (May/June 2006)

http://www.alphaworks.ibm.com/tech/cellcompiler
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.cepba.upc.es/paraver
http://www-128.ibm.com/developerworks/power/cell
http://www.spec.org

CMP Cache Architecture and the OpenMP

Performance

Jie Tao1,2, Kim D. Hoàng3, and Wolfgang Karl3

1 Department of Computer Science and Technology
Jilin University, P.R. China

2 Institut für wissenschaftliches Rechnen, Forschungszentrum Karlsruhe GmbH
Postfach 3640, 76021 Karlsruhe

3 Institut für Technische Informatik, Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

jie.tao@iwr.fzk.de

Abstract. Chip-multiprocessor (CMP) is regarded as the next gener-
ation of microprocessor architectures. For programming such machines
OpenMP, a standard shared memory model, is a challenging candidate. A
question arises: How to design the CMP hardware for high performance
of OpenMP applications?

This work explores the answer with cache architecture as a case study.
Based on a simulator, we investigate how cache organization and recon-
figurability influence the parallel execution of an OpenMP program. The
achieved results can direct both architecture developers to determine
hardware design and the programmers to generate efficient codes.

1 Motivation

OpenMP [8] is a portable model supporting parallel programming on multipro-
cessor systems with a shared memory. It is gaining broader application in both
research and industry. From high performance computing to consumer electron-
ics, OpenMP has been established as an appropriate thread-level programming
paradigm. In comparison to MPI [18], another dominating programming model
for parallelization, OpenMP has several advantages. For example, with MPI pro-
grammers have to explicitly send messages across processes, however, OpenMP
provides implicit thread communication over the shared memory. Another feature
of OpenMP is that it maintains the semantic similarity between the sequential and
parallel versions of a program. This enables an easy development of parallel appli-
cations without the requirement of specific knowledge in parallel programming.

Currently, with the trend of microprocessor design towards chip-multiple,
OpenMP acquires increasing popularity due to its property of multithreading
and the advantages mentioned above.

A chip-multiprocessor is actually a kind of SMP (Symmetric Multiprocessor)
with a difference that the processor cores are integrated on a single chip. As the
processors share the same memory bus, memory access penalty can be higher
on this architecture than other machines like uniprocessor and SMP systems,

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 77–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 J. Tao, K.D. Hoàng, and W. Karl

due to potential bus contention. In addition, more cache misses can be caused
on CMPs because the per-processor cache is usually smaller than other archi-
tectures. According to an existing research work [9], up to a 4-fold of cache miss
rate could be measured on a 4-processor CMP as on a uniprocessor system.

As a consequence, increasing research work addresses the design of cache ar-
chitecture on CMP systems, with a current focus on the organization of the
second level cache [13,16] and reconfigurable hardware [2,3]. Before the imple-
mentation of the real hardware, however, it is necessary to give a quantitative
evaluation of the potential and benefit of different cache design on the running
applications, here the OpenMP programs.

With this motivation, we built a cache model that simulates the whole cache
hierarchy of a chip-multiprocessor system, with arbitrary level of caches, different
replacement policies, a variety of prefetching schemes, and different cache line
invalidation strategies. Configuration parameters, like cache size, set size, block
size, and associativity, can be specified by users. Based on this simulator, we
primarily explored the answer for two questions: 1) Private L2 or shared? 2)
Does programs benefit from reconfiguration?

The purpose of the first study is to detect an adequate architecture of the
second level cache. The performance of this cache is important because, according
to the current design of CMPs, L2 is the last level of on-chip caches and an L2
miss thereby results in a reference to the main memory. We studied the impact of
private caches, a standard design of SMPs, and shared caches combinedly used
by all processor cores. It is found that the shared design commonly introduces
better performance.

The second study targets on both static and dynamic reconfiguration of cache
architectures. In the first case, the cache is specifically configured for the individ-
ual application and this configuration maintains during the whole execution of
this program. A dynamic reconfigurable cache architecture, on the other hand,
allows the system to adapt the cache organization to the changing access pat-
tern of a running program. This means the cache can be reconfigured at the
runtime during the execution. Our experimental results show that applications
generally benefit from static reconfiguration. However, for most applications a
dynamically reconfigurable cache is usually not necessary.

The remainder of the paper is organized as following. Section 2 first gives an
overview of related work on simulation-based study of cache architectures. This
is followed by a brief description of the developed cache model in Section 3 with a
focus on its specific feature and simulation infrastructure. Section 4 presents the
experimental results. The paper concludes in Section 5 with a short summary of
this work.

2 Related Work

Simulation is a common used approach for evaluating hardware designs before
the real hardware is implemented. A well-known example is the FLASH simulator
[10] that models the complete architecture of the FLASH multiprocessor. In

CMP Cache Architecture and the OpenMP Performance 79

addition to such simulators of special purpose, tools for general research studies
are also available. Representative products include SimOS [11], SIMICS [14], and
SimpleScalar [1]. We choose SIMICS as an example for a deeper insight.

SIMICS is a full-system simulator with a special feature of allowing the boot-
ing of an original operating system to the simulation environment. It models
shared memory multiprocessor systems and the execution of multi-threading
applications. It also contains a module that models the basic functionality of
caches. This module can be extended for individual purpose of different re-
searchers. Due to this characteristics, a set of simulation-based research work
in the field of cache memories are conducted on top of SIMICS. For example,
Curtis-Maury et al. [4] use this simulation platform to evaluate the performance
of OpenMP applications on SMP and CMP architectures in order to identify
architectural bottlenecks. The L2 miss was used as a performance metric for
this evaluation. Liu et al. [13] apply SIMICS to verify their proposed mechanism
for implementing a kind of split organization of the second level cache.

Besides the full-system simulators, several specific cache models have also
been developed. Cachegrind [19] is a cache-miss profiler that performs cache
simulation and records cache performance metrics, such as number of cache
misses, memory references, and instructions executed for each line of the source
code. It is actually a toolkit contained in the Valgrind runtime instrumentation
framework [17], a suite of simulation-based debugging and profiling tools for
programs running on Linux. MemSpy [15] is a performance monitoring tool
designed for helping programmers to discern memory bottlenecks. It uses cache
simulation to gather detailed memory statistics and then shows frequency and
reason of cache misses.

In addition, several research work use analysis models to predict the cache
access behavior and achieve performance metrics to evaluate either the hardware
or the application. StatShare [7] is such an example, which predicts the cache
miss rate based on the reuse distance of memory references.

Overall, cache architecture has been studied using simulation in the last years
and chip-multiprocessor has also been addressed. We follow this traditional ap-
proach, but conduct a novel investigation, i.e. studying the adaptivity between
OpenMP performance and the cache organization.

3 The Cache Simulator

As available simulators do not deliver all required properties, e.g. performance
metrics, for this specific study, we developed a cache simulator called CASTOR
(CAche SimulaTOR).

CASTOR Features. First, CASTOR simulates the basic functionality of the
cache hierarchy on a CMP machine. For flexibility, cache-associated parameters
such as size, associativity, cache level, and write policies can be arbitrarily spec-
ified by users. Corresponding to most of the realistic cases, we assume that one
processor runs only a single thread and the master thread, which is responsible
for the sequential part of an application, is mapped to the first processor.

80 J. Tao, K.D. Hoàng, and W. Karl

CASTOR simulates several cache coherence protocols for filling the different
requirement of users. In addition to the conventional MESI scheme, other pro-
tocols like MSI and MEOSI are also supported. These protocols differ in the
number of status of a cache line, where MESI scheme uses four status, Modified,
Exclusive (unmodified), Shared (unmodified), and Invalid, to identify a cache
line, while MSI applies only three of them and MEOSI deploys an additional
one “Owner” to show the home node of the cached data. False sharing scenarios
are identified in order to make this simulator more general that it can also be
applied for other research work, for example, code optimization. For the same
reason, mechanisms of classifying cache misses and various prefetching schemes
are implemented within CASTOR.

Simulation Infrastructure. CASTOR requires a frontend to deliver the run-
time memory references of an OpenMP program. We could integrate CASTOR
into the SIMICS environment, however, for this research work, a complicated
full-system simulator is not necessary. In this case, we deployed Valgrind to
provide the needed information and built an interface between CASTOR and
this frontend for an on-line simulation. Alternatively, memory references can
be stored in a trace file enabling simulations with different cache parameters,
without having to run the application again.

Valgrind

prefetching hotspots

miss
classification

replacement

memory
reference

miss & mapping conflict

miss

misshit/miss

hit/miss

coherence

cache module

Fig. 1. CASTOR overall infrastructure

CASTOR, on the top level, is composed of several modules. As shown in
Figure 1, the cache module, the main component of this infrastructure, is respon-
sible for the basic functionality of a cache hierarchy. For each memory access from
Valgrind it performs the search process in the caches available for the thread issu-
ing this reference and thereby determines whether the access is a hit or a miss at
each cache level. During this process, other modules could be initiated for addi-
tional functions. First, the coherence module is called to handle the cache coher-
ence issues. In case of a mapping conflict, the replacement module is deployed to
achieve a free cache line for incoming data. For a cache miss, the miss classification

CMP Cache Architecture and the OpenMP Performance 81

module is adopted to determine the miss type, which lies in four categories: com-
pulsory, capacity, conflict, and invalidation miss. Compulsory miss occur when
the data is first accessed, hence this kind of miss is also called first reference or
cold miss. In this case, the data is still in the main memory and has to be loaded
to the cache. Conflict misses occur when a data block has to be removed from
the cache due to mapping overlaps. Capacity misses occur when the cache size
is smaller than the working set size. The information about the miss type can
give the programmers valuable help in code optimization. The hotspot module is
responsible for mapping the cache miss to the functions in the source program.
This feature allows CASTOR to deliver simulation results at high-level and also
the users to find access bottlenecks. Finally, the prefetching module is called when
the user has specified a kind of prefetching. In this case, appropriate data blocks
are loaded to the cache and the cache state is correspondingly updated.

Performance Data. CASTOR provides at the end of simulation a set of per-
formance metrics, such as statistics on cache hits, cache misses and each miss
category, cache line invalidations, false sharing, and prefetching. Performance
information can be given at the basis of complete program or for each individual
function contained in a program.

4 Experimental Results

Based on CASTOR, we could study the influence of different CMP cache or-
ganization on the performance of OpenMP applications. Six applications from
both the SPEC [6] (Equake, Mgrid, and Gafort) and NAS [5,12] (CG, FT, and
EP) OpenMP benchmark suite are tested. For smaller memory access traces the
SPEC applications are simulated with the test data size and applications from
the NAS Parallel Benchmark are configured with CLASS S.

Private or Shared L2? The first study addresses the organization of the cache
level closest to the main memory, i.e. the L2 cache. Applications are executed
on systems with 2, 4, and 8 cores separately and the number of cache misses
are measured. To allow a fair comparison, the size of the shared L2 cache is
the sum of all local L2s in the private case. Cache parameters are chosen as:
32 bytes of cache line, 4-way write-through L1 of 16K, 8-way write-back L2 of
512K (private), MESI coherence protocol, and the LRU replacement policy that
chooses the least recently used cache block as candidate to store the requested
data . We select several interesting results for demonstration.

Figure 2 is the experimental result with the CG code. For a better understand-
ing of the cache behavior, we show the miss in different classifications rather than
only depicting the total misses which correspond to the height of the columns
in the figure. For this figure and all others in the following the number of misses
is shown in a unit of one million.

As can be seen in the left diagram, a shared cache performs generally better
than the private caches. In the case of 4 and 8 processors, almost all misses that
occur with private cache are eliminated. This outstanding performance could

82 J. Tao, K.D. Hoàng, and W. Karl

0

2

4

6

8

10

12

2CPU-
Private

2CPU-
Shared

4CPU-
Private

4CPU-
Shared

8CPU-
Private

8CPU-
Shared

N
u

m
b

e
r
 o

f
m

is
s
e
s

Invalidation

Capacity

Conflict

Compulsory

0

2

4

6

8

10

12

14

16

2CPU-
Private

2CPU-
Shared

4CPU-
Private

4CPU-
Shared

8CPU-
Private

8CPU-
Shared

N
u

m
b

e
r
 o

f
m

is
s
e
s

Invalidation

Capacity

Conflict

Compulsory

Fig. 2. L2 misses of the CG application

be resulted by the relative large cache size, in contrast to the working set, and
perhaps does not suffice for a general conclusion. Therefore, we simulated the
code again with a smaller L2 of 64K. As shown in the right diagram of Figure 2,
the same result can be observed: shared L2 outperforms private caches.

Observing both diagrams, it can be seen that for the CG program capacity
miss is the main reason of poor performance of private caches. It can also be
seen, more clearly in the left diagram, that the performance gain achieved with
shared L2 is also primarily due to the reduction of the capacity miss. This can
be explained by the fact that in the shared case a larger L2 (in size of combined
private L2s) is available to each processor and as a consequence capacity problem
can be relaxed. However, the CG application also shows a reduction of conflict
miss in the shared L2 cache. This feature depends on the access pattern of this
program. As the data requested by a single processor has different mapping
behavior in shared and private caches, conflicts that occur in a private cache
could be removed with a larger shared cache.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

2CPU-
Private

2CPU-
Shared

4CPU-
Private

4CPU-
Shared

8CPU-
Private

8CPU-
Shared

N
u

m
b

e
r
 o

f
m

is
s
e
s

Invalidation

Capacity

Conflict

Compulsory

0

1

2

3

4

5

6

7

8

2CPU-
Private

2CPU-
Shared

4CPU-
Private

4CPU-
Shared

8CPU-
Private

8CPU-
Shared

N
u

m
b

e
r
 o

f
m

is
s
e
s

Invalidation

Capacity

Conflict

Compulsory

Fig. 3. L2 misses of the FT (left) and Equake (right) applications

CMP Cache Architecture and the OpenMP Performance 83

Similar to CG, other applications also prefer to a shared L2. Figure 3 demon-
strates the result with the FT and Equake program. For both codes, it can be
seen that the better performance with a shared L2 is contributed by the reduc-
tion of compulsory misses. The capacity miss, another dominant miss category
with these programs, however, can not be removed with a shared cache. This
means the combination of the L2 caches on all processors can not achieve a cache
memory that is large enough to hold the needed data for running these programs.

Overall, the experimental results depict that OpenMP applications benefit
from the shared cache.Althoughdifferent codes have their own contribution to this,
several common reason exist. For example, parallel threads executing a program
share partially the working set. This shared data can be reused by other processors
after being loaded to the cache, reducing hence the compulsory miss. Shared data
also saves space because it is only cached once. This helps to reduce the capacity
miss. In addition, there are no invalidation misses with a shared cache.

Static Reconfigurable Cache? The second experiment aims at finding how
the performance of an application varies across different cache configurations.
For this we simulated the cache behavior of each application with various cache
size, line size, and associativity. Number of total misses in the L1 cache were
measured.

0

10

20

30

40

50

60

32B 64B 128B 256B

N
um

be
r

of
 L

1
m

is
se

s

CG

EP

FT

Equake

Fig. 4. L1 miss with changing block size

Figure 4 is the result with changing cache block size. It can be seen that
applications differ in cache access behavior with this parameter. CG presents
the best scalability, where cache miss keeps reducing as the block size increases.
EP shows the same behavior, but with only slight reduction in cache miss. The
other programs, FT and Equake achieve the best performance with a cache block
size of 128B and further enlarging the blocks worsens cache performance.

To better understand these different behavior, we have examined the miss
classification of two representative programs: CG and FT. We found that the
good performance and scalability of CG is mainly contributed by the reduction

84 J. Tao, K.D. Hoàng, and W. Karl

of capacity miss, but also the conflict miss which maintains reducing even though
only slightly. For the FT code, however, the conflict miss grows with 256B and
the reduction in capacity miss can not compensate for this. As a consequence,
more misses are caused with a 256B cache than a 128B one.

For changing associativity, nevertheless, the result is not so identical. As can
be seen from Figure 5, FT and EP have increasing cache misses with larger
associativity; CG behaves similarly with various set size; Equake benefits signif-
icantly from the increasing associativity; and the rest two applications, Gafort
and Mgrid, have a better performance with a 4-way cache but a further incre-
ment in associativity does not introduce more cache hits.

0

10

20

30

40

50

60

2-way 4-way 8-way 16way voll

N
um

be
r o

f L
1

m
is

se
s

CG

EP

FT

Equake

Gafort

Mgrid

Fig. 5. L1 miss with changing associativity

For explaining these different behavior, we examine further the miss classifi-
cations of all applications shown in Figure 6.

For the CG program, it can be seen that the conflict miss, as expected, de-
creases with the increasing number of blocks within a cache set. However, the
capacity miss, another dominating miss of this code, grows up with the associa-
tivity. Combined, the cache performance gets worse.

For the FT program, nevertheless, conflict misses increase with the associativ-
ity. This behavior is not expected. Hence, we have examined the three primary
individual functions in this program and observed that one of them has less miss
with larger cache sets but the others perform best with a 2-way cache. This
means an individual tuning with respect to the functions, e.g. using a reconfig-
urable cache architecture capable of changing the configuration at the runtime,
could be needed by this application.

EP shows less miss with a 4-way cache than a 2-way cache, but a further
increase in associativity introduces more cache misses. It can be observed that
EP has capacity problem. However, the capacity miss does not change across
different set size. This specific behavior lies singly on the conflict miss and can
only be explained by the individual access pattern of this application.

CMP Cache Architecture and the OpenMP Performance 85

0

5

10

15

20

25

2-way 4-way 8-way 16way voll

N
u

m
b

e
r
 o

f
m

is
s

e
s

Invalidation

Capacity

Conflict

Compulsory

CG

0

10

20

30

40

50

60

2-way 4-way 8-way 16way voll

Invalidation

Capacity

Conflict

Compulsory

FT

0

5

10

15

20

25

30

2-way 4-way 8-way 16way voll

Capacity

Conflict

Compulsory

EP

0

5

10

15

20

25

2-way 4-way 8-way 16way voll

N
u

m
b

e
r
 o

f
m

is
s
e
s

Invalidation

Capacity

Conflict

Compulsory

Equake

0

2

4

6

8

10

12

14

2-way 4-way 8-way 16way voll

N
u

m
b

e
r
 o

f
m

is
s
e
s

Invalidation

Capacity

Conflict

Compulsory

Mgrid

0

2

4

6

8

10

12

14

16

18

20

2-way 4-way 8-way 16way voll

N
u

m
b

e
r
 o

f
m

is
s
e
s

Invalidation

Capacity

Conflict

Compulsory

Gafort

Fig. 6. Miss classification with changing associativity

Equake achieves the best performance with the changing associativity: number
of cache misses keeps going down up to full-associative caches. As shown in
Figure 6, this is completely contributed by the reduction of conflict miss. Hence,
increasing the blocks of a cache set helps this application to tackle the mapping
conflict.

Mgrid and Gafort show a significant miss reduction when the associativity
switched from 2-way to 4-way. However, further enlarging the cache set does not
introduce much change in cache performance. This means for both applications
a 4-way cache is preferred.

For changing cache size, as shown in Figure 7, no worse behavior can be seen
with the increase of the cache capacity. Applications differ in this behavior in that
some benefit more and others less. For example, CG needs a large cache for a high
cache ratio, but for FT a larger cache can not remove the misses significantly.

In summary, OpenMP applications have different requirement in cache or-
ganization. For example, a specific line size can significantly improve the cache
performance of an individual application, but introduces no gain with another
program. A large cache can potentially considerately reduce the cache miss of
one application, but is not necessary for another. This means a static tuning of

86 J. Tao, K.D. Hoàng, and W. Karl

0

5

10

15

20

25

30

35

40

45

4K 8K 16K 32K

CG

EP

FT

Equake

Gafort

Mgrid

Fig. 7. L1 miss with changing cache size

the cache configuration according to the requirement of individual applications
can result in better performance and at the same time efficiently utilize the cache
resource.

Dynamic Reconfiguration? The last experiment aims at examining the cache
behavior of different functions within a single program. For this, we use the
hotspots component of CASTOR to order the overall cache misses to individual
functions. Again we measured the number of total L1 misses.

19

19,5

20

20,5

21

21,5

22

2-way 4-way 8-way 16way voll

N
u

m
b

e
r
 o

f
L

1
 m

is
s
e
s

conj_grad

0,71

0,72

0,73

0,74

0,75

0,76

0,77

0,78

2-way 4-way 8-way 16way voll

N
u

m
b

e
r
 o

f
L

1
 m

is
s
e
s

sparse

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

2-way 4-way 8-way 16way voll

N
u

m
b

e
r
 o

f
L

1
 m

is
s

e
s

makea

cg

Fig. 8. L1 miss of functions with changing associativity

Figure 8 is a sample result achieved with the FT code. Three diagrams in the
figure depict the changing behavior, with respect to the cache associativity, of the
four functions with the most cache misses. It can be seen that the best set size for
both conj grad() and sparse() is 8, while for makea() a 2-way cache is better and
cg() has no specific need. This indicates that a dynamic tuning of the cache line

CMP Cache Architecture and the OpenMP Performance 87

size potentially improves the performance of CG. Similar result has also been
acquired with FT. However, for other applications and cache parameters, no
considerate distinction has been observed. Therefore, we conclude that a runtime
cache reconfiguration is usually not necessary for the OpenMP execution.

5 Conclusions

Chip Multiprocessor is the trend of microprocessor design and OpenMP is an ap-
propriate programming model for it. As the memory wall keeps widening, cache
performance becomes increasingly important, especially for chip multiprocessors
with potentially more cache misses.

This paper investigates the impact of various cache designs on the performance
of OpenMP programs on chip multiprocessor systems. The study is based on a
self-written cache simulator that comprehensively models the cache functionality
and provides thereby performance metrics for evaluating the cache access behav-
ior. We have focused on the structure of the second level cache and issues with
reconfigurable caches. The achieved results can direct both hardware developers
and programmers to design efficient architecture and applications.

References

1. Austin, T., Larson, E., Ernst, D.: SimpleScalar: An Infrastructure for Computer
System Modeling. Computer 35(2), 59–67 (2002)

2. Benitez, D., Moure, J.C., Rexachs, D.I., Luque, E.: Evaluation of the Field-
programmable Cache: Performance and Energy Consumption. In: Proceedings of
the 3rd conference on Computing frontiers (CF 2006), Ischia, Italy, May 2006, pp.
361–372 (2006)

3. Carvalho, M.B., Goes, L., Martins, C.: Dynamically Reconfigurable Cache Archi-
tecture Using Adaptive Block Allocation Policy. In: Proceedings of the 20th Inter-
national Parallel and Distributed Processing Symposium (IPDPS) (April 2006)

4. Curtis-Maury, M., Ding, X., Antonopoulos, C., Nikolopoulos, D.: An Evaluation
of OpenMP on Current and Emerging Multithreaded/Multicore Processors. In:
Proceedings of the First International Workshop on OpenMP (IWOMP), Eugene,
Oregon USA (June 2005)

5. Bailey, D., et al.: The NAS Parallel Benchmarks. Technical Report RNR-94-007,
Department of Mathematics and Computer Science, Emory University (March
1994)

6. Saito, H., et al.: Large System Performance of SPEC OMP 2001 Benchmarks. In:
Zima, H.P., Joe, K., Sato, M., Seo, Y., Shimasaki, M. (eds.) ISHPC 2002. LNCS,
vol. 2327, pp. 370–379. Springer, Heidelberg (2002)

7. Petoumenos, P., et al.: Modeling Cache Sharing on Chip Multiprocessor Archi-
tectures. In: Proceedings of the 2006 IEEE International Symposium of Workload
Characterization (2006)

8. Chandra, R., et al.: Parallel Programming in OpenMP. Morgan Kaufmann, San
Francisco (2000)

9. Fung, S.: Improving Cache Locality for Thread-Level Speculation. Master’s thesis,
University of Toronto (2005)

88 J. Tao, K.D. Hoàng, and W. Karl

10. Gibson, J., Kunz, R., Ofelt, D., Horowitz, M., Hennessy, J., Heinrich, M.: FLASH
vs (Simulated) FLASH: Closing the Simulation Loop. In: Proceedings of the 9th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), November 2000, pp. 49–55 (2000)

11. Herrod, S.A.: Using Complete Machine Simulation to Understand Computer Sys-
tem Behavior. PhD thesis, Stanford University (February 1998)

12. Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance. Technical Report NAS-99-011, NASA Ames Re-
search Center (October 1999)

13. Liu, C., Sivasubramaniam, A., Kandemir, M.: Organizing the Last Line of Defense
Before Hitting the Memory Wall for CMPs. In: Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA 2004), Madrid,
Spain, February 2004, pp. 176–185 (2004)

14. Magnusson, P.S., Werner, B.: Efficient Memory Simulation in SimICS. In: Pro-
ceedings of the 8th Annual Simulation Symposium, Phoenix, Arizona, USA (April
1995)

15. Martonosi, M., Gupta, A., Anderson, T.: Tuning Memory Performance of Sequen-
tial and Parallel Programs. Computer 28(4), 32–40 (1995)

16. Molnos, A.M., Cotofana, S.D., Heijligers, M.J.M., van Eijndhoven, J.T.J.: Static
Cache Partitioning Robustness Analysis for Embedded On-chip Multi-processors.
In: Proceedings of the 3rd conference on Computing frontiers (CF 2006), Ischia,
Italy, May 2006, pp. 353–360 (2006)

17. Nethercote, N., Seward, J.: Valgrind: A Program Supervision Framework. In: Pro-
ceedings of the Third Workshop on Runtime Verification (RV 2003), Boulder, Col-
orado, USA (July 2003), http://developer.kde.org/∼sewardj

18. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann, San Francisco
(1996)

19. WWW. Cachegrind: a Cache-miss Profiler,
http://developer.kde.org/∼sewardj/docs-2.2.0/cg main.html#cg-top

http://developer.kde.org/~sewardj
http://developer.kde.org/~sewardj/docs-2.2.0/cg_main.html#cg-top

Exploiting Loop-Level Parallelism for SIMD

Arrays Using OpenMP

Con Bradley and Benedict R. Gaster

ClearSpeed Technology Plc
3110 Great Western Court

Hunts Ground Road
Bristol BS34 8HP UK

{ceb,brg}@clearspeed.com

Abstract. Programming SIMD arrays in languages such as C or
FORTRAN is difficult and although work on automatic parallelizing
programs has achieved much, it is far from satisfactory. In particular,
almost all ‘fully’ automatic parallelizing compilers place fundamental re-
strictions on the input language.

Alternatively OpenMP provides an approach to parallel programming
that supports incremental improvements to applications that places re-
strictions in the context of preserving semantics of a parallelized section.
OpenMP is limited to a thread based model that does not define a map-
ping for other parallel programming models.

In this paper, we describe an alternative approach to programming
SIMD machines using an extended subset of OpenMP (OpenMP
SIMD), allowing us to model naturally the programming of arbitrary
sized SIMD arrays while retaining the semantic completeness of both
OpenMP and the parent languages.

Using the CSX architecture we show how OpenMP SIMD can be im-
plemented and discuss future extensions to both the language and SIMD
architectures to better support explicit parallel programming.

1 Introduction

With the rise of both SIMD processors, such as ClearSpeed’s SIMD Array Pro-
cessor [1], and the current unstoppable trend to put more and more cores on to
a single die, parallel programming is back with a bang! For anyone who has tried
to write a reasonably large parallel program then this will be seen with at least
a slight frown. Why? In a nutshell parallel programming is hard and a choice
must be made as to which of the many parallel programming languages to use.

While there is no magic wand to wave that can easily resolve the problem
of parallel programming, there has been a number of recent proposals for pro-
gramming languages, including Brook [2], Cilk [3], and Cn [4], and a number
of simple language extensions for parallel programming, including OpenMP [5]
and X10 [6]. Other than Brook, which introduces a programming model based
on Streams, Cn, OpenMP , and X10 are all based upon existing programming

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 89–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 C. Bradley and B.R. Gaster

languages C1 [7] and Java [8], respectively, and as such provide parallel program-
ming in the context of well understood and widely used programming paradigms.
It is only OpenMP that has seen wide adoption in the marketplace and is the
only major parallel programming extension to C that is supported by the ma-
jor compiler vendors, including Intel (Intel C Compiler) and Microsoft (Visual
Studio).

OpenMP as defined is intended as a light-weight approach to programming
threads. In this paper, we describe an alternative interpretation of OpenMP ,
called OpenMP SIMD, that rather than mapping to the standard runtime
parallelism of threads looks instead at how it can be deployed for programming
SIMD machines. In particular, we show that the loop level parallelism described
by OpenMP maps well to data-parallelism as an alternative to the runtime
approach described traditionally by OpenMP .

While we believe this alternative semantics for OpenMP is valid for any
SIMD architecture, including Intel’s Streaming SIMD Extensions [9], we focus
here on programming the CSX architecture [1]. The CSX architecture is a SIMD
array with a control unit and a number of processing elements (PE), with each
PE having a relatively small private storage and supports an asynchronous I/O
mechanism to access larger shared memory.

To date the CSX architecture would have been programmed using the explicit
parallel programming language Cn but such an approach has some draw backs:

– Any code must be completely ported to use explicit parallelism before it can
be run; and

– Users have large amounts of C and OpenMP code that they do not want to
re-write.

A mapping from OpenMP to either Cn or directly to the CSX architecture
provides an alternative approach as OpenMP provides a piecemeal approach
to parallelizing a given program and by definition supports any legacy C and
OpenMP code.

The remaining sections of this paper are as follows; Section 2 introduces the
CSX architecture, including how it is intended to be programmed; Section 3
is broken into a number of sub-sections describing the translation of
OpenMP SIMD to the CSX architecture; Section 4 gives two examples of
OpenMP SIMD in practice, highlighting both the translation and the small
but necessary extensions to OpenMP ; and finally, Section 5 concludes.

2 The CSX Architecture

The CSX family of co-processors [1] are based around a multi-threaded array
processor (MTAP) core optimized for high performance, floating point inten-
sive applications. The most recent product includes an MTAP processor, DDR2
DRAM interface, on-chip SRAM and high speed inter-processor I/O ports.
1 OpenMP provides models for C++ and FORTRAN but we choose to focus on the

C++ variant.

Exploiting Loop-Level Parallelism for SIMD Arrays 91

I-CACHE I Fetch/Decode

Instruction Issue

ALU

REGS

I/O

ALU

REGS

MEM

I/O

ALU

REGS

MEM

I/O

ALU

REGS

MEM

I/O

(a) CSX MTAP Processor

Mono Poly I/O

Instruction Decode/Issue

I-CACHE

Instruction Stream

(b) Instruction Execution

Fig. 1. CSX Architecture

Figure 1(a), visualizes the MTAP architecture showing a standard, RISC-
like, control unit with instruction fetch, caches, and I/O mechanisms. A single
instruction stream comprising of fairly standard, three operand instructions, is
made up of mono (non-parallel) instructions executed by a single RISC-style
processor and SIMD instructions (poly) executed, in lock-step, by a number of
poly execution (PE) cores2.

As noted above the processor executes a single instruction steam; each instruc-
tion is sent to one of the functional units, which may be in the mono, or poly
execution units or one of the I/O controllers. Figure 1(b) shows this visually.

The main change from programming a standard processor is the concept of
operating on parallel data. Data to be processed is assigned to ‘variables’ which
have an instance on every PE core and are operated on in parallel: we call this
poly data. Intuitively, this can be thought of as a data vector which is distributed
across the PE core array.

Variables which only need to have a single instance (e.g. loop control variables)
are known as mono variables; they behave exactly like normal variables on a
sequential processor and can be ‘broadcast’ to all PEs if required in the poly
domain.

Code for the mono and poly execution units is handled similarly, except the
handling of conditional code execution. The mono unit uses conditional jumps to
branch around code like a standard RISC architecture. This affects both mono
and poly operations. The poly unit uses an enable register to control execution
of each PE. If one or more of the bits of that PE enable register is zero, then the
PE core is disabled and most instructions it receives will perform as though a
NOP has been issued. The enable register is a stack, and a new bit, specifying
the result of a test, can be pushed onto the top of the stack allowing nested
predicated execution. The bit can later be popped from the top of the stack to

2 The current CSX600 processor has 96 PEs.

92 C. Bradley and B.R. Gaster

remove the effect of the condition. This makes handling nested conditions and
loops very efficient.

In order to provide fast access to the data being processed, each PE core
has its own local memory and register file. Each PE can directly access only its
own storage and additionally can communicate with its left and right neighbors
via what is known as the swazzle path, forming a network of PEs. Data is
transferred between PE (poly) memory and registers via load/store instructions
while a family of instructions is provided for swazzle communication.

In the following mapping of OpenMP to the CSX architecture it is impor-
tant to note that mono memory (i.e. card memory) and local PE (poly) mem-
ory are allocated separate address spaces which require 32 and 16 bit pointers,
respectively.

3 OpenMP SIMD

As discussed in the introduction we are looking at using OpenMP to exploit loop
level parallelism and as such the translation described below supports only one
parallel construct, namely, the work-sharing loop. For this construct, we retain
the fork-join ‘threading’ model. The master thread runs on the mono processor
and is responsible for creating the ‘thread’ gang to execute the iterations of the
work-sharing loop. Where the translation differs from the multi-core threading
model traditionally associated with OpenMP is that each ‘thread’ is modeled
as a PE element. At the end of the loop there is an implicit barrier. OpenMP
expects the master thread to participate in the loop calculations but in our model
this is not the case due to the asymmetry between the PE and mono processor
architecture. We assume that all housekeeping operations are carried out on the
mono processor.

3.1 Work-Sharing Constructs

The OpenMP SIMD translation actually provides two alternative mappings
descrined in the following to sections.

Poly Loop Translation. OpenMP states that the index variable of the loop
to be parallelized becomes private for the duration and thus a straightforward
translation of the OpenMP loop pragma to OpenMP SIMD is to make the
control variable poly and to increment by the number of PEs each time around
the loop. Such a translation has the effect of unrolling the loop by the number of
PEs. Mapping the test expression of the loop to use the poly control variable and
increment with the defined increment plus the number of PEs in the final clause
of the loop definition, provides all that is needed for the loop control definition.
All that is remaining is to translate the body of the loop. The mapping is defined
as follows:

#pragma omp parallel for clause clause ...
for (i = e1; i op e2; i = i ops incr) { stmts; }

Exploiting Loop-Level Parallelism for SIMD Arrays 93

is translated to3:

{ poly int ip = e1;
for (ip = ip ops get penum() ∗ incr; ip op e2; s1p)

{ stmtsp; }
}

Here OpenMP requires that op is one of <, >, ≤, or ≥ and ops is + or −.
With this s1p becomes4 ip = ip ops (incr ∗ NUM PES).

Finally, we must provide a translation for stmtsp. Firstly, all automatics de-
fined locally to the scope of the loop become poly, i.e. privates in OpenMP , and
any reference to the index variable i is replaced with ip. Secondly, the translation
must replace all accesses to arrays indexed by newly introduced poly expressions
with poly temporaries, and insert calls to runtime routines that copy data be-
tween memory spaces, accounting for the strided access implied by parallelizing
by the number of PEs. For example, consider the following loop statement which
uses i to index into an array of mono doubles:

double tmp = V[i];

In the first part of the translation this becomes:

poly double tmpp = V[ip];

Assuming that V is defined globally and thus in OpenMP terminology shared,
then this expression becomes the list of statements5:

poly double tmpp;
double * poly Vp = ((double * poly) V) + ip;
memcpym2p(&tmpp, Vp, sizeof(double));

where memcpym2p is one of a family of memory transfer routines forming part
of the OpenMP SIMD runtime, with this routine in particular performing data
transfers from mono memory into local PE memory.

Mono Loop Translation. The poly loop translation given above is both obvi-
ous and straightforward but in practice may not be the most effective approach
to implementing the loop on a SIMD style architecture.

To illustrate this consider the simple poly loop6:

for (ip = 0; ip < bound; ip + +) { ... }

As all control flow is handled in the mono processor a poly loop must be
implemented by evaluating the conditional ip < bound such that all, some, or
none of the PEs are disabled. Then a mono instruction is issued to determine if
all of the PEs are disabled and if so then exit the loop, otherwise continue with
3 The OpenMP SIMD runtime function poly int get penum(void) returns the unique

number assigned to each PE, given in the sequence 0..95.
4 NUM PES is defined statically as the number of PEs for a given implementation.
5 The type expression double ∗poly should be read as a poly pointer to a mono double.
6 Assuming bound to be mono.

94 C. Bradley and B.R. Gaster

the next iteration. The overhead of checking wheather the PEs are disabled or
not is expensive and is often not necessary, as a mono loop can be used instead.

To explain the mono loop translation we consider again the loop from the
previous section:

#pragma omp parallel for clause clause ...
for (i = e1; i op e2; i = i op incr) { stmts; }

which can be translated into the mono loop:

for (i = e1; i op (e2 − (e2% NUM PES));
i = i op (incr ∗ NUM PES))

{ stmtsp }

Finally a translation for stmtsp is required, which is the same as in the pre-
vious section except in the case when the control variable i is referenced. In this
case the translation needs to account for the fact that OpenMP , and thus the
translation, requires that for the duration of the loop i is marshaled as a private
and to account for the unrolling factor the PE number must be added into any
expression referencing i. Again considering the loop defined statement:

double tmp = V[i];

the first part of the translation gives:

poly double tmpp = V[i];

As i must be treated as a private, accounting for the stride due to loop unrolling,
the final translated code becomes:

poly double tmpp;
double * poly Vp = ((double * poly) V) +

(i + get penum() ∗ incr);
memcpym2p(&tmpp, Vp, sizeof(double));

If one is not careful it is easy to think at this point that the translation for
mono loops provided above is enough, but we must consider the case when the
number of PEs is not a multiple of the number of PEs. To see that there may
in fact be a problem, consider again the translated test condition for the loop
i op (e4 − (e4% NUM PES)).

The expression (e4 − (e4% NUM PES)) always results in an expression
that is a multiple of the number of PEs. It is straightforward to see that any
remaining number of iterations will not be performed by the loop, and as is the
case with optimizations like software-pipelining [10] the mono loop translation
requires some additional post loop code to account for these missing iterations.
This is easily achieved by augmenting the translation with the post loop code:

if (get penum() < (e4% NUM PES)) { stmtsp; }

Where stmtsp is the same set of statements from the translated loop body
and the conditional simply disables any PEs not required for the remaining
calculation. An important consideration is to note that as the conditional is

Exploiting Loop-Level Parallelism for SIMD Arrays 95

poly then stmtsp will always be executed. If the condition get penum() <
e4% NUM PES evaluates to false this could be expensive depending on the
size of the sequence stmtsp. This overhead can be easily avoided by adding in
an additional mono conditional of the form:

if (e4% NUMP ES)

3.2 Data Environment

OpenMP defines a set of constructs to describe how data is shared in parallel
regions and we must capture how these are mapped into OpenMP SIMD.

OpenMP defines storage as being either private to a thread or shared, i.e.
globally shared for all threads. The obvious translation into OpenMP SIMD is
to map private variables to PE memory (poly) and shared to mono memory.

The remainder of this section considers the consequences of this simple trans-
lation and provides some extensions to OpenMP when the mapping does not
quite capture the required semantics.

Sharing Attribute Rules. OpenMP defines a set of rules for describing shar-
ing attributes of variables within parallel constructs. These are variables without
explicit sharing attributes, i.e. the default rules, and we need to confirm their
semantics for OpenMP SIMD. These rules apply in two cases:

1. Variables explicitly declared within the work sharing loop. For our transla-
tion the default rules work well and do not need modification.

2. Variables within called functions. OpenMP refers to these as being within
a region but not a construct, meaning that syntactically a variable does not
appear in a parallel construct but at runtime the function is called from a
parallel region. The rules for data sharing are as in the explicit case but with
one major addition: Formal arguments passed by reference inherit the data
sharing attributes of the actual parameters.

This implies that at compile time, it is impossible for a compiler to know if
a function will be called from a parallel region and thus what the data shar-
ing attributes of its formal parameters will be. In order for the translation to
OpenMP SIMD to work efficiently the user is required to provide this infor-
mation. This leads to the introduction of one of three extensions to OpenMP
as it stands:

#pragma omp private_function <name >

This private function clause marks the function < name > as being called from
a parallel region and hence the default data sharing rules are to be applied. The
default is that all functions are serial, i.e. mono, but this can be overridden via
a default clause. In a typical program, parallel functions can be grouped thus
reducing the amount of explicit clauses needed.

Unlike standard OpenMP the formal arguments to a function for the CSX ar-
chitecture can be either mono or poly but not both. This leads to the observation

96 C. Bradley and B.R. Gaster

that data-sharing attributes of formal parameters need to be specified at com-
pile time as they affect code generation. This is captured in OpenMP SIMD
by introducing a second extension to OpenMP :

#pragma omp param <name > (list)

Where list is defined as a comma separated list, one entry per formal parameter
to < name >; each entry can be of the form:

– private - formal is private (i.e. poly)
– shared - formal is shared (i.e mono)

Variable argument parameters and function pointers are not supported.
The final extension needed for the translation is analogous to that for a func-

tion’s formal arguments but applies to the return value as it can be either mono
or poly but not both:

#pragma omp private_return <name >

This private return clause marks the function < name > as having a private re-
turn value, i.e. poly. The default is that functions return a shared value, i.e. mono.

Any function can have any number of sharing directives applied to describe
all possible calling conditions. This defines a set of ‘signatures’ describing the set
of possible calling conditions. Given these extra annotations a compiler might
choose to use a C++ [11] style name mangling scheme at function definition
time and at function call sites to generate the required function signature. For
example, a simple void function, void foo(void), with no parameters which can
be called from both a parallel and non-parallel region could have two instances,
POLY foo and MONO foo. In a serial context, the mono version is called,

and in a poly context the poly version is called. The linker will then select the ap-
propriate versions. This scheme is also applied to a function’s formal arguments
to generate C++ style mangled names.

It is important to note that for this system to be sound, it must at all
times be known if a piece of code is in a parallel region or not. This is where
OpenMP SIMD differs slightly from OpenMP as it requires this to be enforced
by the user through application of the above extensions.

Data-Sharing Attribute Clauses. OpenMP assumes that multiple threads
execute within the same shared address space and thus inter-thread communi-
cation is straightforward. Data is sent to other threads by assigning to shared
variables. OpenMP also provides support for a variable to be designated as pri-
vate to each thread rather than shared, causing each thread to get a private copy
of a particular variable for the duration of the parallel construct.

This notion of shared and private fits well within our SIMD model of OpenMP,
producing the mapping of private to poly and shared to mono. The firstprivate
and lastprivate clauses are also supported with extra runtime functions provided
to perform the initialization and finalization.

The reduction clause describes the application of a reduction operator to be
applied to a list of private variables. The reduction operator comes from the base

Exploiting Loop-Level Parallelism for SIMD Arrays 97

language and is applied to each (private) copy of the variable at the end of the
parallel construct. This construct is supported by introducing a private copy of
the reduction variable, initialized to the particular reduction operator’s identity,
at the start of the parallel construct. The reduction is then preformed across
all PEs. The swazzle path is used to reduce into either the top or bottom PE,
where the data can be quickly transferred into mono space and assigned to the
original reduction variable. For example, consider the following reduction clause
and loop:

#pragma omp parallel for reduction(+:acc)
for (...) { ... ; acc += ...; }

which becomes7:

poly double acc_p = 0.0;
for (...) { ... ; acc_p += ... ; }
acc += reduce_sum(acc_p);

4 An Example

As an example of OpenMP SIMD we consider performing a Monte-Carlo sim-
ulation to calculate European option prices [12]. The intention here is to show
the extensions in practice. Due to space restrictions we choose not to show the
translated code but rather concentrate our discussion of the extensions them-
selves.

Monte-Carlo simulation problems include derivative pricing, portfolio risk
management and Markov chain simulation. In financial modeling, the problem
of finding the arbitrage-free value of a particular derivative can be expressed as
the calculation of a given integral. As the number of dimensions grows, today’s
financial mathematicians use Monte-Carlo simulation methods to solve problems
in a tractable manner.

Monte-Carlo simulations can be easily parallelized, since tasks are largely in-
dependent and can be partitioned among different processors, and the need for
communication is limited. Due to the simple but highly computational nature of
Monte-Carlo it is clear that any performance increase in their implementation
can lead to substantial speed improvements for the entire system and signifi-
cant advances in time to result. The following function implements Monte-Carlo
option pricing in OpenMP SIMD:

void MCOption(double S, double E, double r,
double sigma , double T,

int nSimulations ,
double *Pmean , double *width) {

7 The function double reduce sum(poly double) is one of a family of reduction opera-
tors provided as part of the OpenMP SIMD runtime, with this function performing
a double precision sum across the PEs placing the scalar result into mono.

98 C. Bradley and B.R. Gaster

double sumx , sumx2 , tmp1 , tmp2 , stdev;
int i;

sumx=0; sumx2 =0;
tmp1=(r -0.5* sigma*sigma)*T; tmp2=sigma*sqrt(T);

#pragma omp for reduction(+:sumx ,+:sumx2)
for (i = 0; i< nSimulations; i++)
{

double Svals , Pvals;
Svals = S* exp (tmp1 +tmp2*gaussrand());
Pvals = Max(Svals - E, 0);
sumx += Pvals;
sumx2 += (Pvals*Pvals);

}
stdev = sqrt(((double)nSimulations*sumx2 -sumx*sumx)/

((double)nSimulations*(double)(nSimulations -1)));

*width = exp(-r *T) * 1.96 * stdev /
sqrt((double)nSimulations);

*Pmean = (exp(-r *T) * (sumx / nSimulations));
}

The above code calls the function gaussrand from within a parallel region
and as a consequence the programmer must tell the compiler, through use of the
OpenMP SIMD extensions, to produce an instance suitable for calling from
within the parallel construct:

#pragma omp private_function gaussrand private(V1,V2 ,S)
#pragma omp private_return gaussrand
double gaussrand(void) {

static double V1 , V2 , S; static int phase = 0;
double X;
...
return X;

}

Here the application of clause private function expresses the requirement that
gaussrand is intended to be called from within a parallel region or loop and
private return implies that the function will produce a private, i.e. poly, re-
sult. This highlights an inportant difference between the threaded approach of
OpenMP ’s out-of-step execution when compared with OpenMP SIMD’s lock-
step execution.

Using our prototype compiler early benchmarking of the Monte-Carlo simu-
lation for European Option pricing has shown excellent results for the OpenMP
SIMD implementation running on ClearSpeed’s Advance Board. These bench-
marks were performed on a 2.33GHz dual-core Intel Xeon (Woodcrest, HP DL

Exploiting Loop-Level Parallelism for SIMD Arrays 99

Table 1. Monte-Carlo - ClearSpeed Board vs. host-only performance comparison

GNU C
Compiler with
Math Kernel

Library

Intel C Compiler
with Math

Kernel Library

ClearSpeed
Advance Board

ClearSpeed
Advance Board
plus Intel Math
Kernel Library

36.6M 40.5M 206.5M 240M

380 G5 system) and the results are shown in Table 1. The results show a 5.15x
performance improvement, for 100,000 Monte-Carlo simulations performed us-
ing a single ClearSpeed Advance board when compared to simply using an Intel
Xeon processor, the Intel C compiler and Math Kernel Library (MKL). When
compared against the GNU C compiler and the Intel MKL the performance im-
provement increases to 5.7x. However, combining both the general purpose Intel
processor and MKL with the Advance board achieves the best result at 240M
samples per second and a performance factor of up to 6x compared to using just
the host processor, Intel C compiler and MKL.

5 Conclusion

In this paper, we have introduced the programming extensions OpenMP SIMD
for programming arbitrary-sized SIMD arrays. This language is understood by
providing an alternative semantics for OpenMP . While there have been a num-
ber of extensions to existing programming lanuages for accessing the features of
SIMD machines, including Cn and C∗ [4,13], to our knowledge we are the first
to propose using OpenMP to program SIMD machines.

We have developed a set of prototype tools targeting the CSX array architec-
ture and are evaluating using OpenMP SIMD as an alternative to the explicit
parallel programming language Cn. Early results indicate that it provides at
least the same functionality and ability for performance.

OpenMP has a relaxed-consistency shared-memory model that allows threads
to have their own view of global data which only required to be synched up at
specific points including the explicit flush operation. Any compiler implementing
OpenMP SIMD has the ability to promote shared variables to registers and even
cache them in PE memory if needed. The flexibility this model allows provides
a compiler with the chance to optimize through data migration between mono
memory, PE memory and host memory.

In conclusion we believe that there is an important and fascinating concept at
the heart of OpenMP SIMD. Essentially we are translating runtime parallelism
into data parallelism. The model can only work if this fundamental difference
in the model is not observable. We believe that this is sound as long as we can
only observe a program’s behavior by its effect on variables. Since we believe we
have correctly defined the data parallelism then there should be no observable
difference in behavior.

100 C. Bradley and B.R. Gaster

Acknowledgments

We would like to thank Ray McConnell who originally introduced us to OpenMP
and David Lacey for his useful feedback on the translation.

References

1. ClearSpeed Technology Plc: White paper: CSX Processor Architecture (2004)
2. Buck, I.: Brook: A Streaming Programming Language. Stanford University (2001)
3. Frigo, M.: Portable High-Performance Programs. PhD thesis, MIT Department of

Electrical Engineering and Computer Science (1999)
4. Gaster, B.R., Hickey, N., Stuttard, D.: The Cn Language Specification. ClearSpeed

Technology Plc. (2006)
5. OpenMP Architecture Review Board: OpenMP Application Program Interface

(2005)
6. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von

Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOPSLA 2005. Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems, languages, and applications,
pp. 519–538. ACM Press, New York (2005)

7. International Standards Organization: ISO/IEC 98899 - Programming Language
C. (1999)

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Specification, 3rd edn.
Addison-Wesley, Reading (2005)

9. Ramanathan, R.: Intel white paper: Extending the world’s most popular processor
architecture. Intel Corp. (2006)

10. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco (2002)

11. Stroustrup, B.: The C++ Programming Language, 2nd edn. Addison-Wesley,
Reading (2000)

12. Wilmott, P.: Quantitative Finance, 2nd edn. John Wiley & Sons Ltd., Chichester
(2000)

13. Rose, J., Steele, G.: C∗: An extended C language for data parallel programming.
In: Internationl Conference on Supercomputing, vol. 2, pp. 72–76 (1987)

OpenMP Extensions for Irregular Parallel

Applications on Clusters

Jue Wang, Changjun Hu, Jilin Zhang, and Jianjiang Li

School of Information Engineering, University of Science and Technology Beijing
No.30 Xueyuan Road, Haidian District, Beijing, P.R. China

juewang@acm.org, huchangjun@ies.ustb.edu.cn, zhangjilin@acm.org,

jianjiangli@gmail.com

Abstract. Many researchers have focused on developing the techniques
for the situation where data arrays are indexed through indirection ar-
rays. However, these techniques may be ineffective for nonlinear index-
ing. In this paper, we propose extensions to OpenMP directives, aiming
at efficient irregular OpenMP codes including nonlinear indexing to be
executed in parallel. Furthermore, some optimization techniques for ir-
regular computing are presented. These techniques include generation of
communication sets and SPMD code, communication scheduling strat-
egy, and low overhead locality transformation scheme. Finally, experi-
mental results are presented to validate our extensions and optimization
techniques.

1 Introduction

Sparse and unstructured computations are widely used in scientific and engineer-
ing applications. This means that the data arrays are indexed either through
the value in other arrays, which are called indirection array, or through non-
affine subscripts. Indirect/nonlinear indexing causes the data access pattern to
be highly irregular. Such a problem is called irregular problem. Many researchers
[1] [2] have focused on developing the techniques for the situation of indirection
arrays. However, these techniques may not be effective for nonlinear indexing.

OpenMP [3] has been widely recognized as standards in both industry and
academe area. For the regular parallel application, a number of efforts [4] [5] have
attempted to provide OpenMP extensions on clusters by using SDSM (Software
Distributed Shared memory) environment. Using the above methods, the com-
munication overhead among threads may be considerable due to irregular data
access pattern. Following their work [6], Basumallik et al. [7] employed producer-
consumer flow graph to translate OpenMP programs to MPI. However, this tech-
nique requires a private copy in each thread. For the situation where data arrays
are indexed through indirection arrays, M. Guo et al. proposed effective OpenMP
extensions [8] and corresponding strategy for automatic parallelization [9]. These
extensions and strategy can’t deduce certain characteristics (e.g., monotonicity)
for nonlinear indexing. In this paper, we focus on the OpenMP extensions and
parallelism strategy for the applications involving nonlinear indexing.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 101–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

102 J. Wang et al.

If the array subscript expressions are nonlinear form, which appear in some
irregular parallel applications, the performance of total execution may not be
improved using the techniques mentioned above. The following program in Fig. 1
shows a perfectly nested loop Ψ .

Fig. 1. Perfectly nested loop

For the sake of simplicity, we assume that the data array A and B have only
one dimension. In the loop, the array access functions (f and g), the lower and
upper bound (L, U), and stride (S) may be arbitrary symbolic expressions made
up of loop-invariant variables and loop indices of enclosing loops. General parallel
compiling techniques can not be applied to these kinds of irregular applications,
because there is no affine relationship between the array global addresses of
LHS (Left Hand Side) and RHS (Right Hand Side). Commonly, the technology
of runtime support library which adopts Inspector/Executor model is applied for
communication generation of irregular parallel applications [1][2]. However, the
existing libraries have an obvious drawback that significant overhead is caused
by the inspector phase.

In comparison to the previous researches, the main characteristics of our work
are as follows:

– To the best of my knowledge, we first propose some extensions to OpenMP,
aiming at efficient irregular OpenMP codes involving nonlinear indexing.

– In our method, most of the communication set generation and the SPMD
code generation can be completed at compile-time.

– A heuristic communication scheduling is used to avoid the communication
conflicts and minimize the number of inter-node barrier.

– We introduce a new data reordering scheme for locality optimization.

The above techniques will be presented in the following sections, respectively.
These methods can experimentally achieve better performance for the irregular
codes involving nonlinear indexing.

The remainder of this paper is organized as follows: Section 2 presents our
extensions to OpenMP for irregular application. Section 3 describes the scheme

OpenMP Extensions for Irregular Parallel Applications on Clusters 103

for communication set generation and the SPMD code generation. Section 4 out-
lines how to reorder data to improve the computation performance. Section 5
introduces the communication scheduling for the performance of inter-node com-
munication. Experimental studies will be shown in Section 6. Finally, Section 7
gives our conclusions.

2 OpenMP Extensions for Irregular Applications

Based on the prior works for multi-paradigm and multi-grain parallelism [10][11],
we provide the extensions to OpenMP, the irregular directives, as follows:

$!Eomp parallel do [reduction|ordered] schedule(irregular)

In traditional OpenMP specification, there are four scheduling policies avail-
able: static scheduling, dynamic scheduling, guided scheduling, and runtime
scheduling. In order to reduce communication overhead and achieve load bal-
ance, we add irregular scheduling to OpenMP. This scheduling follows owner-
compute rule, where each iteration will be executed by the processor which own
the left hand side array reference of the assignment for that iteration. When
the parallel region are recognized as an irregular loop at compile-time phase,
the compiler will complete the computation for generating communication sets,
communication scheduling scheme, and corresponding SPMD code generation
at compile-time as much as possible.

Fig. 2. Example 1

Fig. 2 shows a simplified version of loop nest OLDA (from the code TRFD,
appearing in Perfect benchmark [12]) using EOMP directives.In this exam-
ple, the compiler will treat the loop as a partial ordered, i.e. some iterations
are executed in ordered way while some other may be executed in parallel.
Engelen et al. [13] developed an unified framework for nonlinear dependence
testing and symbolic analysis. This technique can be used to derive iteration
sets of sequential execution and parallel execution, respectively.

104 J. Wang et al.

3 Generating Communication Sets and SPMD Code

In the prior works [14], C. Hu et al. proposed a hybrid approach, which integrates
the benefits from the algebra method and the integer lattice method, to derive an
algebraic solution of communication set enumeration at compile time. They ob-
tain the solution in terms of a set of equalities and inequalities which are derived
from the restrictions of data declarations, data and iteration distribution, loop
bounds, and array subscript expressions. And based on the integer lattice, they
also develop the method for global-to-local and local-to-global index translations.
The corresponding SPMD code focuses on two-layer nested loop and can be

Fig. 3. SPMD code corresponding to the loop in Fig.1

OpenMP Extensions for Irregular Parallel Applications on Clusters 105

completed at compile time without inspector phase of run time. In this sec-
tion, we extend this SPMD code to exploit the parallelism for multi-layer nested
loop.

The sending of messages can be performed individually for each remote pro-
cessor as soon as each packing is completed, instead of waiting for all message for
all processors to be packed. The nonlocal iterations can also be performed based
on each receiving message, instead of waiting for all messages to be received,
because the nonlocal iterations are split into groups based on the sending pro-
cessors. This strategy can efficiently overlap computation and communication.
The SPMD code for the loops in Fig. 1 can be constructed as shown in Fig. 3.

From this SPMD code, Comm Set(i1,i2,...in)[p,q] represents the set of loop
indices (i1,i2,...in)that will be executed in the processor p, and that will ref-
erence array B elements in the processor q. Comm Set(B : r-c)[p,q] is the set
of local array (array B) indices in r-c grid[15], where the row number r spec-
ifies the r th round of the elements distributed to a processor and the col-
umn number c specifies an element in each round. Similarly, Comm Set(A :
r-c)[p,q] is the set of local array (array A) indices in r-c grid. The sequence of
message packing Comm Set(B : r-c)[p,q] in the sending processor q is gener-
ated by Comm Set(i1,i2,...in)[p,q]. In the receiving processor p, the local array
A elements with indices Comm Set(A : r-c)[p,q] will access the remote data
Comm Set(B : r-c)[p,q] from processor q. The sequence of nonlocal references
to array B in the message is also generated by Comm Set(i1,i2,...in)[p,q]. Since
both sequences are generated by the same Comm Set(i1,i2,...in)[p,q], the receiv-
ing processor will access the message in the same order as it is packed in the
sending processor according to the same Comm Set(i1,i2,...in)[p,q].

From the above observation, we can learn that the essence of communication
pattern in our SPMD code is many-to-many communication, where the numbers
of sending and receiving processors are different. This reason is that the real
communication doesn’t occur among processors when some data size is set to
zero. In next section, we will give our communication scheduling algorithm for
many-to-many communication.

4 Communication Scheduling

If there is no communication scheduling in many-to-many communication, a
larger communication idle time may occur due to node contention and the dif-
ference among message lengths during one particular communication step. We
revise the greedy scheduling [16] to avoid node contention and reduce the number
of barrier and the difference of message lengths in each communication step.

In this paper, we use a communication (COM) table to represent the com-
munication pattern where COM(i,j)=u expresses a sending processor Pi send an
u size message to a receiving processor Qj. According to the COM table, our
algorithm generates another table named communication scheduling (CS) table

106 J. Wang et al.

Fig. 4. Our communication scheduling algorithm

which expresses the message scheduling result. CS (i,k)=j means that a sending
processor Pi sends message to a receiving processor Qj at a communication step
k. CS (•,j) indicate the jth column of CS table. Our scheduling algorithm is
shown in Fig.4. If the sizes of the remaining messages are less than a threshold
value, all messages are put in one phase.

Similar issue was considered by proposals in [16] to eliminate communication
conflicts. The key difference between our algorithm and other scheduling algo-
rithms is that the sending processor is permitted to send messages to different
receiving processors in each step when there is no communication conflict. Our
algorithm reduces idle time and the number of barrier as much as possible. A
motivating example will be given in Fig. 5.

Fig. 5. Our communication scheduling algorithm

The COM table in Fig. 5(a) describes a communication pattern. Fig. 5 (b)
and (c) present the CS tables derived from greedy algorithm and our algorithm,
respectively. In Fig. 6, we show the actual communication scheduling of the

OpenMP Extensions for Irregular Parallel Applications on Clusters 107

Fig. 6. Actual communication scheduling

greedy algorithm and our algorithm. The numbered box represents one-unit
message and the number in box is the target processor number. The horizontal
bar consisting of several consecutive boxes denotes that a sending processor
sends a message with different sizes (different number of blocks) to the receiving
processors. A barrier (the vertical lines in Fig. 6) is placed between steps. There
exists idle time (blank boxes) in each step.

From Fig. 6, we can learn that our strategy not only avoids inter-processor
contention, but it also reduces idle time and the number of barrier.

5 Low Overhead Locality Transformation Scheme

In this section, we will present our transformation scheme which relies on deduc-
ing the monotonicity of irregular accesses at compile time. Base on the analysis of
communication set generation in section 3, we have Comm Set(A)[p,q]={f(i1,i2,
... in)|(i1,i2,...in)∈Comm Set(i1,i2,...in)[p,q]}, where Comm Set(i1,i2,... in)[p,q]

is defined in section 3. According to the monotonicity of irregular accesses,
Comm Set(A)[p,q] can be divided into n monotonic intervals (R1,R2,...Rn)
acted on by basic operations like union, intersection, etc. Without loss of gener-
ality, we can assume that m intervals (R1,R2,...Rm) are monotonically increas-
ing, and n-m intervals (Rm+1,Rm+2,...Rn) are monotonically decreasing. Fig. 7
presents our data reordering algorithm used in SPMD code (shown in Fig. 3).

The main overhea d of the above algorithm involves the cost of merge-sort
algorithm. Our experience tell us that this situation seldom occurs because the
rank of nonlinear indexing function (such as f, g in Fig. 1) is often lower than 3.
Thus, there is only a little overhead for our locality transform scheme, and it
can be overlapped by communication of non-local data.

6 Evaluation and Experimental Results

Based on the prior work [12], we have extended the runtime library routines to
support the irregular applications. Our compiler consists of preprocessor, front
end, intermediate language, a runtime library, and back end. It uses the approach

108 J. Wang et al.

Fig. 7. Data reordering algorithm

of source-to-source translation and runtime support to implement our extended
OpenMP. “whirl” is introduced as the intermediate language from ORC[13] for
the optimization work. The runtime library is implemented using our pthread-
based library of MPI calls. We evaluated our extensions on the platform, an
Ethernet switched cluster with 16 Intel Xeon 3.0G/1024K Cache. Each node has
2GB memory and runs RedHat Linux version FC 3, with kernel 2.6.9. The nodes
are interconnected with 1G Ethernets. Time is measured with the gettimeofday()
system call.

OpenMP Extensions for Irregular Parallel Applications on Clusters 109

We select code excerpt from TRFD code and a subroutine OLDA (Example 1
shown in Fig.2) from the Perfect benchmarks. In order to evaluate our extens-
ions, we compare the performance of our implementation with that of
inspector/executor runtime library (no optimization). Fig.8 shows the average
execution time on the cluster for these two implementations.

Fig. 8. Comparing average execution time with inspector/executor runtime library (no
optimization) and our extended OpenMP

From Fig.8, we observed that our extended OpenMP improves the perfor-
mance using the optimization techniques in this paper. This phenomenon is
more significant when the time steps are larger. Most of computation for Ex-
ample 1 can’t be overlapped by corresponding communication because it takes
much more time than communication. Thus, the difference (between inspec-
tor/executor and our extended OpenMP) for Example 1 is less than one for
subroutine OLDA.

7 Conclusions

The performance of irregular parallel applications (including nonlinear index-
ing) in current OpenMP implementation has not well investigated. For these
irregular codes, current OpenMP only sequentially execute loops by using or-
dered directives. In this paper, we proposed to extend OpenMP directives to
be suitable for compiling and executing irregular codes. Furthermore, we pre-
sented some optimization techniques including generation of communication sets
and SPMD code, communication scheduling strategy, and low overhead locality
transformation scheme. We have introduced these techniques into our extended
OpenMP compiler. The experiments validated the efficacy of our extensions and
optimization strategies.

Acknowledgments

The work reported in this paper was supported in part by the Key Technologies
Research and Development Program of China under Grant No.2006038027015,

110 J. Wang et al.

the Hi-Tech Research and Development Program (863) of China under Grant No.
2006AA01Z105, Natural Science Foundation of China under Grant No.60373008,
and by the Key Project of Chinese Ministry of Education under Grant No.
106019.

References

1. Saltz, J., Ponnusamy, R.D., Sharma, S., Moon, B., Hwang, Y.S., Uysal, M., Das, R.:
A Manual for the CHAOS Runtime Library, UMI-ACS, University of Manyland
(1994)

2. Chakrabarti, D.R., Banerjee, P., Lain, A.: Evaluation of Compiler and Runtime
Library Approaches for Supporting Parallel Regular Applications. In: Proc. of the
12th International Parallel Processing Symposium on International Parallel Pro-
cessing Symposium, pp. 74–80 (1998)

3. OpenMP application program interface, ver 2.5, Tech. report (May 2005),
http://www.openmp.org/

4. Chapman, B., Bregier, F., Patil, A., Prabhakar, A.: Achieving Performance under
OpenMP on ccNUMA and Software Distributed Shared Memory Systems. Special
Issue of Concurrency Practice and Experience, 713–739 (2002)

5. Min, S.J., Basumallik, A., Eigenmann, R.: Optimizing OpenMP Programs on Soft-
ware Distributed Shared Memory Systems. Int. J. Paral. Prog. 31(3), 225–249
(2003)

6. Basumallik, A., Eigenmann, R.: Towards Automatic Translation of OpenMP to
MPI. In: Proc. of the 19th ACM Int’l Conference on Supercomputing (ICS),
Boston, pp. 189–198 (2005)

7. Basumallik, A., Eigenmann, R.: Optimizing Irregular Shared-Memory Applications
for Distributed-Memory Systems. In: Proc. of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), New York, pp. 119–128
(2006)

8. Guo, M., Cao, J., Chang, W., Li, L., Liu, C.: Effective OpenMP Extensions for
Irregular Applications on Cluster Environments. In: Li, M., Sun, X.-H., Deng, Q.-
n., Ni, J. (eds.) GCC 2003. LNCS, vol. 3033, pp. 97–104. Springer, Heidelberg
(2004)

9. Guo, M.: Automatic Parallelization and Optimization for Irregular Scientific Ap-
plications. In: Proc. of the 18th International Parallel and Distributed Processing
Symposium (2004)

10. Wang, J., Hu, C., Lai, J., Zhao, Y., Zhang, S.: Multi-paradigm and Multi-grain Par-
allel Model Based on SMP-Cluster. In: Proc. of IEEE 2006 John Vincent Atanasoff
International Symposium on Modern Computing. IEEE Society Press, Los Alami-
tos (2006)

11. Yongjian, C., Jianjiang, L., Shengyuan, W., Dingxing, W.: ORC-OpenMP: An
OpenMP compiler based on ORC. In: Voss, M. (ed.) Proc. Of the International
Conference on Computational Science, pp. 414–423. Springer, Heidelberg (2004)

12. Berry, M., Chen, D., Koss, P., Kuck, D., Lo, S., Pang, Y., Roloff, R., Sameh, A.,
Clementi, E., Chin, S., Schneider, D., Fox, G., Messina, P., Walker, D., Hsiung,
C., Schwarzmeier, J., Lue, K., Orzag, S., Seidl, F., Johnson, O., Swanson, G.,
Goodrum, R., Martin, J.: The PERFECT club benchmarks: effective performance
evaluation of supercomputers. International Journal of Supercomputing Applica-
tions 3(3), 5–40 (1989)

http://www.openmp.org/

OpenMP Extensions for Irregular Parallel Applications on Clusters 111

13. Engelen, R., Birch, J., Shou, Y., Walsh, B., Gallivan, K.: A Unified Framework
for Nonlinear Dependence Testing and Symbolic Analysis. In: Proc. of the ACM
International Conference on Supercomputing, pp. 106–115 (2004)

14. Hu, C., Li, J., Wang, J., Li, Y.H., Ding, L., Li, J.J.: Communicate generation for
irregular parallel applications. In: Proc. IEEE International Symposium on Parallel
Computing in Electrical Engineering, Bialystok, Poland, IEEE Society Press, Los
Alamitos (2006)

15. Tseng, E.H.-Y., Gaudlot, J.-L.: Communication generation for aligned and
cyclic(k) distributions using integer lattice. IEEE Transactions on Parallel and
Distributed Systems 10(2), 136–146 (1999)

16. Faraj, A., Yuan, X., Patarasuk, P.: A Message scheduling scheme for All-to-all
personalized communication on Ethernet switched cluster. IEEE Trans. Parallel
Distrib. Systems (2006)

Optimization Strategies Using Hybrid

MPI+OpenMP Parallelization for Large-Scale
Data Visualization on Earth Simulator

Li Chen1 and Issei Fujishiro2

1 Institute of Computer Graphics and Computer Aided Design, School of Software,
Tsinghua University, Beijing 100084, P.R. China

chenlee@mail.tsinghua.edu.cn
2 Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku,

Sendai 980-8577, Japan
fuji@vis.ifs.tohokua.ac.jp

Abstract. An efficient parallel visualization library has been developed
for the Earth Simulator. Due to its SMP cluster architecture, a three-level
hybrid parallel programming model, including message passing for inter-
SMP node communication, loop directives by OpenMP for intra-SMP
node parallelization and vectorization for each processing element (PE)
was adopted. In order to get good speedup performance with OpenMP
parallelization, many strategies are used in implementing the visualiza-
tion modules such as thread parallelization by OpenMP considering seed
point distributions and flow features for parallel streamline generation,
multi-coloring reordering to avoid data race of shared variables, some
kinds of coherence removal, and hybrid image-space and object-space
parallel for volume rendering. Experimental results on the Earth Simu-
lator demonstrate the feasibility and effectiveness of our methods.

1 Introduction

In March 2002, Japan built a supercomputer called the Earth Simulator (ES)[1]
for predicting various earth phenomena by numerical simulations. The ES is
helpful for solving global environmental problems and taking measures against
natural disasters. It has shared memory symmetric multiprocessor (SMP) clus-
ter architecture, and consists of 640 SMP nodes connected by a high-speed net-
work. Each node contains eight vector processors with a peak performance of 8
GFLOPS and a high-speed memory of 2 GB for each processor. According to
the Linpack benchmark test, the ES was the fastest supercomputer in the world
in June 2002, having a peak performance of 35.61 TFLOPS [1].

ES generates extremely large amount of data everyday. In order to help re-
searchers understand large 3D datasets arising from numerical simulations on
the ES, a high-performance parallel visualization library for large unstructured
datasets is very necessary. The present study has been conducted as a part of
the Earth Simulator project with the goal of developing a parallel visualization
library for solid earth simulation.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 112–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimization Strategies Using Hybrid MPI+OpenMP Parallelization 113

Although the ES is fast on scientific computing, its graphics processing ability
is rather limited. There is no graphics hardware on the ES. Nowadays, more
and more attention is focused on the hardware acceleration to achieve real-time
speed. However, how to get high speed on this kind of supercomputers without
any graphics hardware is still an important topic. It is very critical to make full
use of the hardware features of the ES during the implementation of parallel
visualization modules.

Different from most supercomputers, the vector processor, 500 MHz SX-6
NEC processor, was adopted on the ES, which contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for a peak performance of 8
Gflops/s per CPU [2]. The processors contain 72 vector registers, each holding
256 64-bit words. Since the vector performance is significantly more powerful
than its scalar one, it is very important to achieve high vector operation ratios,
either via compiler discovery or explicitly through code re-organization.

For SMP cluster machines, in order to achieve minimal parallelization over-
head, a multi-level hybrid programming model [3,4] is often employed for SMP
cluster architectures. The aim of this method is to combine coarse-grain and
fine-grain parallelism. Coarse-grain parallelism is achieved through domain de-
composition by message passing among SMP nodes using a scheme such as the
Message Passing Interface (MPI) [5], and fine-grain parallelism is obtained by
loop-level parallelism inside each SMP node by compiler-based thread paral-
lelization such as OpenMP [6]. Another often used programming model is the
single-level flat MPI model [3,4], in which separate single-threaded MPI pro-
cesses are executed on each processing element (PE). The advantage of a hybrid
programming model over flat MPI is that there is no message-passing overhead
in each SMP node. This is achieved by allowing each thread to access data pro-
vided by other threads directly by accessing the shared memory instead of using
message passing. However, obtaining a high speedup performance for the hybrid
parallelization is sometimes difficult, often more difficult than for flat MPI [7],
and hence most applications on SMP machines still adopt a flat MPI parallel
programming model primarily due to three reasons. First, although OpenMP
parallelization can avoid communication overhead, this method involves thread
creation and synchronization overheads; Moreover, if the MPI routines are in-
voked only outside of parallel regions, all communication is done by the master
thread while the other threads are idle; Furthermore, one thread is not able to
saturate the total inter-node bandwidth that is available for each node. Many ex-
amples show that flat MPI is rather better [3,4], although the efficiency depends
on hardware performance, features of applications, and problem size [7].

This paper will describe our methods to re-design visualization algorithms
for the ES so as to fit the hybrid architecture of the SMP cluster machines
and obtain good parallel performance by hybrid parallel programming model of
MPI + OpenMP. It is organized as follows. First we give a brief introduction to
our parallel visualization library on the ES in Sect. 2. Section 3 gives our method
to get good parallel performance for parallel streamline generation module. Sec-
tion 4 describes our optimization methods for parallel volume rendering large

114 L. Chen and I. Fujishiro

unstructured datasets by the hybrid parallelization. Finally conclusions will be
given in Sect. 5.

2 Parallel Visualization Library on Earth Simulator

Currently, most existing commercial visualization software systems work well for
relatively small data, but often fail for huge datasets due to the lack of parallel
performance and the limitations for some special hardware. We have developed a
parallel visualization library which can handle extremely large data size on the ES.

The parallel visualization library provides many visualization functions, in-
cluding parallel surface rendering and volume rendering [8] for scalar field, par-
allel streamline, parallel particle tracking and parallel Line Integral Convolution
(LIC) for vector fields [9] and parallel hyperstreamlines for tensor fields [10].
Many strategies were adopted to improve visualization quality.

In order to fit for different requirements of simulations, three parallel frame-
works are provided in our library including a client/server style for interactive
visualization, a concurrent-in-memory style for extremely large data size, and
a concurrent-in-time style for real time computational steering on the ES. The
concurrent-in-memory style is particular powerful on the ES. For extremely large
simulation data possibly up to terabytes scale on the ES, it is very difficult and
time-consuming to transfer such kind of data to the client machines even for
simplified visual primitives. Meanwhile, it is impossible to perform visualization
on a single processor client machine due to the memory limitation. Therefore,
we have developed the concurrent-in-memory style so as to perform the concur-
rent visualization with computation on the ES. Almost all of the visualization,
including data filtering, mapping and rendering, is executed on the ES in highly
parallel and images or a sequence of images are generated directly, the size of
which is independent of the size of the original dataset. This style is available
for arbitrarily large data size.

Our parallel visualization library can be applicable for most typical mesh
types used in scientific simulations, including regular grids for Finite Difference
Method(FDM), particles for Discrete Element Method(DEM), and unstructured
grids for Finite Element Method(FEM). The grids can be very complicated in
FEM computing, consisting of unstructured, hierarchical and hybrid grids. Ef-
fective visualization algorithms were adopted for different grids, respectively.

In order to make full use of the shared memory architecture and reduce syn-
chronization overhead in each SMP node, we re-design all the visualization al-
gorithms so as to get good thread parallel performance using OpenMP in each
SMP node.

3 Optimization for Parallel Streamline Generation

3.1 Motivation

Advection based flow visualization method such as streamlines, streamtubes,
particles or flow ribbons [11,12] is still one of the most important flow

Optimization Strategies Using Hybrid MPI+OpenMP Parallelization 115

visualization methods because it can provide intuitive and precise local insight,
but it is very difficult to obtain high speedup performance on distributed-memory
machines. This is mainly because the streamline is usually approximately con-
structed by successive integration, as shown in the following formula:

pk+1 = pk + h · vk (1)

where pk,pk+1 correspond to the current and next positions on a streamline
respectively, h specifies the integration step, and vk is the velocity vector at the
position pk.

On distributed memory platforms, streamline may pass through many PEs
which causes very frequent communications among PEs, as shown in Fig. 1.
Before visualization, it is very difficult to know how a streamline runs over the
whole field, thus load imbalance is a very critical problem in streamline gener-
ation. The speedup performance slows down dramatically with the increase of
PE number. Therefore, in order to get better performance for parallel streamline
visualization, we should reduce PE number to as few as possible.

Fig. 1. Different partitions marked by dash lines with the domain number equal to 2
(left) and 16 (right)

The SMP cluster architecture of the ES provides us a good opportunity to
reduce the PE number with a ratio of 8. However, because the next position on
the streamline is strongly dependent on the current position during the tracing
process, how to parallelize with OpenMP in each SMP node is still a problem.
We should keep the balanced and independent load for each thread within the
SMP node. Meanwhile, the load should also be balanced among SMP nodes.
Although all the points’ positions on the same streamline is strongly dependent,
the positions of points on different streamlines are not related. Therefore, we
partition the whole dataset based on the positions of seed points (the starting
points for generating streamlines).

3.2 Thread Parallelization Based on Seed Point Distribution

During the streamline generation process, it is very important to decide how
many streamlines are generated and where to place the initial points for starting

116 L. Chen and I. Fujishiro

trace so as to reveal the features of the whole field. In our streamline module,
the following three styles are provided for determining seed points: (1) User-
specified manually: The coordinates of all seed points are specified by users; (2)
Semi-automatic: Users specify the number of seed points and the plane equation
on which all seed points are located and our module selects optimum positions of
all seed points on the specified plane; (3)Automatic: Some existing good seeding
methods were implemented in our module to determine seed points automatically
according to flow features so as to show the flow more thoroughly.

The seed distribution among PEs is not considered during the process of se-
lecting seed points. They are specified just based on the features of the whole
field. Therefore, the even distribution of seeds among processors should be care-
fully considered in the dynamic repartition process. We implemented a multi-
conditional balance algorithm. The priority of evenly seeding is higher than that
of vertex number balance in our implementation.

ParMetis [13] was used in our library for dynamic mesh partitioning. It is an
MPI-based parallel library that implements a variety of algorithms for partition-
ing and repartitioning unstructured graphs and dramatically reduces the time
cost in communication by computing mesh decompositions such that the num-
bers of interface elements are minimized. It is an excellent mesh partition tool
because it is very fast and supports multi-phase and multi-physics cases. Multi-
ple quantities can be load balanced simultaneously. We assign a relatively larger
weight for the vertex very close to or just on seed points. In the multi-constraint
graph partitioning of ParMetis, a partitioning is obtained such that the edge-cut
is minimized and that every subdomain has approximately the same amount of
the vertex weights, so this can ensure an almost equal number of seed points
located in each subdomain. The number of subdomains is equal to SMP node
number and every SMP node is assigned one subdomain.

Inside each domain, thread parallelization by OpenMP is performed during
the loop for seed points. For each seed point, a streamline is generated. On the
scalar SMP cluster machine, in order to make full use of cache capability, it is
better to assign the seed points located closely in positions to the same PE. But
the PE of the ES is a vector processor without cache, so data locality is not
necessary. Instead, we distribute the seed points with close positions to different
PEs. This is because the load on each PE is dependent not only on the number
of seed points but also on the length of each streamline inside the PE. If the
streamline segment is short within the PE, tracing the seed point is very fast.
The streamlines with close distances often have similar flow pattern and thus
similar length inside the PE, so scattering close seed points on different PEs
sometimes may improve the OpenMP parallel efficiency greatly.

Except seed points, the consideration of flow features is also important for
improving parallel performance. For example, around vortex areas, the traced
streamline is usually longer than that in straight direction flow. In complicated
flow areas, the streamline length inside the current PE is usually longer than
that in flat flow areas. Thus, flow feature detection was combined into our flow

Optimization Strategies Using Hybrid MPI+OpenMP Parallelization 117

repartition process. Critical points are found in each processor and larger vertex
weights are assigned for the vertices near the critical points. The weight value is
inversely proportional to the distance away the critical points. If there are more
than one critical point near a vertex, the vertex weight value is the sum of all
the computed weights to each neighboring critical point. Using this way, the less
vertices can be assigned in the processor which contains complicated flow areas
so as to keep the total vertex weights balanced among processors.

3.3 Experimental Results

We have applied the method to a 3D irregular flow field, which simulates a flow
passing through an ellipsoidal cylinder. The 3D data set has 20,254,320 unstruc-
tured grid cells. Some vortices occur after the flow passes over the cylinder. The
seed points are all located upstream at the beginning. Fig. 2 gives the partition
examples of 8 domains. We can see the repartitioned mesh by our method can
reflect the seed point distribution and flow direction very well. Meanwhile, the
vortex areas (located in red and deep blue respectively in Fig. 2(b)) are specially
handled to contain less vertices compared with other subdomains.

Fig. 2. An example of the flow repartition: original mesh partition without considering
seed distributions and flow directions (left); repartitioned mesh by our method (right)

We tested it from 1(8PEs) to 8 SMP nodes (64PEs) on the ES. For generating
800 streamlines using 8 SMP nodes, the optimized hybrid method can achieve
1.54 times faster than the optimized flat MPI method, 2. 98 times faster than
the original hybrid method, and 4.11 times faster than the original flat MPI
method. The optimized hybrid method is much faster than the original hybrid
method mainly because the visualization load is extremely imbalanced in the
original mesh partition. For 8 SMP nodes, during almost the whole process, only
two nodes are busy and all others are idle if the data is partitioned as Fig.2(a).

118 L. Chen and I. Fujishiro

Meanwhile, the mesh repartition time is just 1.57 seconds (it still leaves some
space for speed improvement) and can be done in preprocessing. From Fig.3,
we can see the speedup performance of new repartitioned mesh is much better
than original one with the increase of processor number in both flat MPI and
hybrid cases. Meanwhile, the optimized hybrid method is much faster than the
optimized flat MPI because the communication overhead is still increased very
fast with the increase of PE number even if the mesh repartition is used. For the
case of using 8 SMP nodes, the whole data is partitioned into 64 domains with
flat MPI method and the time cost of communication among 64 PEs becomes
large, whereas only 8 domains are used for the hybrid method.

Fig. 3. Parallel performance comparison among flat MPI, hybrid MPI+OpenMP with-
out optimization and optimized hybrid parallel in terms of elapsed time (left) and
speedup (right)

4 Optimization for Parallel Volume Rendering Module

4.1 Multi-coloring for Avoiding Data Race

Loop directives by OpenMP [6] are used for the parallelization in each SMP
node. A lack of dependency and the absence of a data race are critical in order
to achieve efficient parallel performance. However, in our visualization library,
data race would exist in some parts. For example, in the PVR module, before
ray-casting grids, the gradient value on each vertex must first be computed. The
gradient is computed by the shape function of each mesh element. The pseudo
algorithm for obtaining gradient values is as follows:

#pragma omp parallel
for each element i do
begin

compute the Jacobian matrix of the shape function;

Optimization Strategies Using Hybrid MPI+OpenMP Parallelization 119

for each vertex j of element i do
begin

for each other vertex k in the element i do
accumulate gradient value of vertex j contributed by vertex k;

end
end

A data race on accesses to the shared variable gradient exists because one
vertex is often shared by a number of elements. Although this data race can
be avoided by adding mutual exclusion synchronization or writing to a private
variable in each thread and then copying to the shared variable, these operations
require extra cost with respect to either time or memory. In our parallelization, a
multi-coloring strategy was adopted [14], which can easily eliminate data races.
As shown in Fig.4, elements are assigned a color such that each element differs in
color from its adjacent elements. After coloring, the elements assigned the same
color have no common vertex, and so can be parallelized without any data race
by OpenMP. Elements in different colors should be computed in serial order.
Although extra time is required for multi-coloring, parallel performance can be
improved much for large time-step dataset visualizations. The multi-coloring
process need only be executed once at the first time-step.

Fig. 4. Multi-coloring for removing data race

4.2 Hybrid-Space Parallel Volume Rendering

Three types of parallelism occur in existing ray-casting PVR algorithms: image-
space parallel, object-space parallel and time-space parallel. Image-space parallel
subdivides the screen into a number of areas, and assigns one or more areas to
each PE, whereas the object-space parallel subdivides all of the volume data
into a number of subvolumes, and assigns one or more subvolumes to each PE.
Image-space parallel makes load balance easy to obtain and involves less com-
munication, but usually requires replicated data in order to avoid the costly
data redistribution. Object-space parallel does not require data redistribution
nor replication, so this type of parallelism has better storage scalability as the

120 L. Chen and I. Fujishiro

data size increases. However, since the intensity of each pixel may originate from
several PEs, the composition of the final image requires a great deal of commu-
nication. The communication overhead will increase greatly with the increase in
the PE number.

Obviously, on distributed-memory machines, object-space parallel is better
for very large datasets to avoid the memory problem, whereas the image-space
parallel is better for shared-memory machines. However, for SMP cluster ma-
chines, the hybrid architecture can take advantage of both parallel methods.
Object-space parallel can be used among SMP nodes to reduce the data size on
each SMP node, and image-space parallel is used in each SMP node to take ad-
vantage of its shared memory. By hybrid-space parallel, we can avoid the storage
problem for large datasets, the communication bottleneck for large numbers of
PEs, and obtain good load balance in each SMP node.

Furthermore, hybrid-space parallel with MPI+OpenMP parallelization can
obtain much higher performance due to the early ray termination algorithm [8].
The ray casting volume rendering method is adopted in our PVR module so
as to obtain high quality rendering images. Early ray termination is a widely
used acceleration technique in the ray casting volume rendering. When we cast
a ray and let it pass through the volume data, the current accumulated opacity
value will be computed. If the opacity approaches zero, it means the elements
behind cannot contribute anything to the final image, so we can stop the tracing
directly. This can avoid much useless computation and usually may result in
2-3 times performance improvements. However, early-ray termination becomes
less effective as the number of processors increases. An increasing percentage of
the processors are assigned occluded portions of the data and therefore either
perform unnecessary computation or have no work to do. So 50% or more of
the processing power of a large parallel machine may be wasted. Hybrid-space
parallel can reduce the number of partitioned domains with a ratio 8. Meanwhile,
the smaller partitioned domain number will make the final composition process
much faster.

4.3 Revise Ray-Tracing Algorithm for Avoiding Coherence

In order to get high parallel performance in each SMP node, algorithms need be
changed in many places for parallel visualization modules. For example, exploring
and making full use of many kinds of coherence has been an important focus in
the area of computer graphics, whereas dependency removal is important for get-
ting both thread parallel and vector performance. Therefore, different algorithms
were adopted in our PVR method for flat MPI and MPI+OpenMP+vectorization
respectively.

As shown in Fig.5(a), during the ray-casting process in the PVR method, all
the sample points along the ray need to be composed from front to back. There
are some good methods to quickly decide the next position the ray reaches by the
current position and ray direction. This can accelerate the PVR method greatly
because the intersection computation spends much time in the ray-casting PVR
method.

Optimization Strategies Using Hybrid MPI+OpenMP Parallelization 121

Fig. 5. Different algorithms used for the ES visualization modules: exploring coherence
(left) and avoiding dependence on the ES (right)

However, it cannot get good performance on the ES. Because the position of
the next sample point is strongly dependent on the previous one, the vectoriza-
tion and thread parallelization cannot be applied. Therefore, we have to give up
the coherence merit and avoid dependency as possible as we could. As shown in
Fig.5(b), on the ES, first we determine the set of possible voxels according to the
first and last intersection points in the supervoxel. The number of possible voxels
can be further reduced by judging whether the distance between the center point
of the voxel and the ray line is shorter than the half of the longest diagonal line
of the voxel. The possible voxels are marked in dark color in Fig.5(b). Then find
intersection points with each possible voxel independently and store the results
for all the intersected voxels. Finally make composition from front to back. The

Fig. 6. Volume rendered images for time-varying geo-dynamo simulation by our PVR
module

122 L. Chen and I. Fujishiro

correct composition order can be decided by index values in regular grids. After
revision, dependency only exists in the last step. It can achieve better speed on
the ES than the original method.

4.4 Experimental Results

We have tested the proposed methods by a time-varying geo-dynamo simulation
dataset. This dataset is generated to simulate time-evolution of vorticity for the
geo-dynamo in a rotation hemi-spherical shell. It has 18,027,520 unstructured
grid elements. The grid size is much different in this dataset, in which the largest
one is about 500 times larger than the smallest one.

Volume rendered images for 500 time-steps with 32 rotation frames per time-
step are tested using from 1(8PEs) to 24 SMP nodes (192 PEs) on the ES. Fig.6
shows four images at different time-steps. The pattern of vorticity and its distri-
bution on the inner and outer boundary surfaces can be revealed very clearly by
these images. To generate almost the same quality 16,000 images up to 24 SMP
nodes, the comparison in terms of elapsed time and speedup performance by
the flat MPI method, hybrid MPI+ OpenMP without optimization and hybrid

Table 1. Elapsed time to generate PVR images for 500 time-steps with 32 rotation
frames per time-step by the three methods for the same geo-dynamo simulation using
different SMP node numbers

1 node 2 nodes 4 nodes 8 nodes 12 nodes 16 nodes 20 nodes 24 nodes

Flat MPI (s) 207566 117483 68410 49197 40288 34628 32454 31217

Hybrid (s) 173106 89982 47230 25108 19177 15253 12498 10256

Optimized(s) 159232 80103 42712 23746 17523 14152 11238 9808

Fig. 7. Parallel performance comparison among flat MPI, hybrid MPI + OpenMP
without optimization and optimized hybrid parallel in terms of elapsed time (left) and
speedup (right)

Optimization Strategies Using Hybrid MPI+OpenMP Parallelization 123

MPI+OpenMP with optimization are shown in Fig. 7. The elapsed time of the
three methods is listed in Table 1. We can see the hybrid MPI+OpenMP paral-
lelization is much faster than flat MPI due to the hybrid-space parallelization and
early-ray termination. Moreover, after further optimized by the multi-coloring
reorder and coherence removal, the optimized hybrid method achieves better
results.

5 Conclusions

This paper describes some strategies for improving speedup performance of
hybrid MPI+OpenMP parallelization in the implementation of a visualization
library for the ES, including the flow field repartition considering seed point
distributions and flow features for parallel streamline generation, multi-coloring
reorder to avoid data race of shared variables, the coherence removal, and hy-
brid image-space and object-space parallel for volume rendering. Future work
will focus on performance tests on large simulations using more than 100 SMP
nodes and improving the vectorization performance for each PE.

Acknowledgement

This study is a part of the “Frontier Simulation Software for Industrial Science”
project in the “IT Program” funded by the Ministry of Education, Culture,
Sports, Science and Technology, Japan (MEXT). It is also supported in part
by the NSFC through grants No. 60773143 and No. 90715043. Furthermore, the
authors would like to thank the reviewers of the International Workshop on
OpenMP 2007 to give us many valuable comments for rewriting the paper.

References

1. Earth Simulator Research and Development Center Web Site,
http://www.es.jamstec.go.jp/

2. Oliker, L., Carter, C., Shalf, J., Skinner, D., Ethier, S., et al.: Evaluation of Cache-
based Superscalar and Cacheless Vector Architectures for Scientific Computations.
Supercomputing, 38–48 (2003)

3. Nakajima, K.: OpenMP/MPI Hybrid vs. Flat MPI on the Earth Simulator: Par-
allel Iterative Solvers for Finite Element Method. In: International Workshop on
OpenMP: Experiences and Implementations (WOMPEI 2003). LNCS, vol. 2858,
pp. 486–499. Springer, Heidelberg (2003)

4. Cappelo, F., Etiemble, D.: MPI versus MPI+OpenMP on the IBM SP for the NAS
Benchmarks. Supercomputing, 12–19 (2000)

5. MPI Web Site: http://www.mpi.org
6. OpenMP Web Site: http://www.openmp.org
7. Rabenseifner, R.: Communication Bandwidth of Parallel Programming Models on

Hybrid Architectures. In: International Workshop on OpenMP: Experiences and
Implementations (WOMPEI 2002). LNCS, vol. 2327, pp. 437–448. Springer, Hei-
delberg (2002)

http://www.es.jamstec.go.jp/
http://www.mpi.org
http://www.openmp.org

124 L. Chen and I. Fujishiro

8. Levoy, M.: Display of Surfaces from Volume Data. IEEE Computer Graphics and
Applications 8(3), 29–37 (1988)

9. Cabral, B., Leedom, C.: Image Vector Field Using Line Integral Convolution. In:
Computer Graphics Proceedings, ACM SIGGRAPH, pp. 263–272 (1993)

10. Delmarcelle, T., Hesselink, L.: Visualizing Second-Order Tensor Fields with Hyper-
Streamlines. IEEE Computer Graphics and Applications 13(4), 25–33 (1993)

11. Schroeder, W.J., Volpe, C.R., Lorensen, W.E.: The Stream Polygon: A Technique
for 3d Vector Field Visualization. In: Proc. Visualization, vol. 91, pp. 126–132.
IEEE Computer Society Press, Los Alamitos (1991)

12. van Wijk, J.J.: Flow Visualization with Surface Particles. IEEE Computer Graphics
and Applications 13(4), 18–24 (1993)

13. http://www-users.cs.umn.edu/∼karypis/metis/parmetis/
14. Washio, T., Maruyama, K., Osoda, T., Shimizu, F., Doi, S.: Blocking and Reorder-

ing to Achieve Highly Parallel Robust ILU Preconditioners. In: RIKEN Symposium
on Linear Algebra and its Applications, The Institute of Physical and Chemical
Research, pp. 42–49 (1999)

http://www-users.cs.umn.edu/~karypis/metis/parmetis/

An Investigation on Testing of Parallelized Code

with OpenMP

Robert Barnhart, Christian Trefftz, Paul Jorgensen, and Yonglei Tao

Department of Computer Science and Information Systems
Grand Valley State University, Allendale MI 49401-9403

{trefftzc,jorgensp,taoy}@gvsu.edu

Abstract. Testing is a crucial element of software development. As
OpenMP becomes more widely used, a relevant question for develop-
ers is: How will programs, that have been parallelized with OpenMP, be
tested for correctness? OpenMP programs are concurrent programs and
as such all the risks of concurrent programming are present as well. This
paper presents some observations about testing parallelized loops using
OpenMP.

1 Introduction

OpenMP is a programming environment made up of compiler directives, run-
time library routines, and environment variables that allows parallel processing
on shared memory computer systems [1]. Because of the concurrent nature of
the environment, there are data dependencies [2,3] that, if not handled correctly,
can cause faults in a program. Standard testing plans [4], both of the structural
and functional type, are not suitable to be used for programs which make use of
OpenMP because of the complications introduced by the use of multiple threads
processing the same code at the same time 1. While much research has been
done to help a programmer detect, classify, and remove these data dependencies,
not much has been done to help test a program that has been parallelized.
This paper explores different approaches to testing to see what might be done
to discover improperly parallelized loops. The two most widely used testing
methods - functional (black box) and structural (white box) testing [4] - might
not be sufficient when it comes to testing programs that have been parallelized
using OpenMP. It is possible to use a valid set of functional test cases on both a
correct serial version and an incorrectly parallelized version of a program. The
tests may produce correct results, even though the parallel version is incorrect,
because the data dependencies produced by parallelizing a program are not likely
to become apparent every single time the program is tested.

Typical scientific and engineering applications spend most of their time in a
small set of loops. Parallelizing these loops yields, usually, reasonable speedups
1 There is a commercial product from Intel that checks the correctness of programs

that use threads, based on the analysis of memory access from the threads. But the
problem remains for other brands of processors.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 125–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 R. Barnhart et al.

[3]. Therefore, we will concentrate here on the parallelization of loops with
OpenMP.

In the realm of sequential processing, J.C. Huang’s rule [5] is applied when
testing loops. Huang proved that every loop involves a decision, and in order to
test the loop, we need only to test both outcomes of the decision: one outcome is
to traverse the loop (only traversing it one time is sufficient), and the other is to
exit (or not enter) the loop. When testing a parallelized loop, however, Huang’s
idea is not applicable. In fact, it might create a false sense of security, as the
problems caused by parallelization will not surface until at least two iterations
of the loop are executed concurrently.

Thus if one traversal of a parallelized loop is not good enough, how do we
prove that the parallelization of that loop is correct? This is the key question
being addressed in the following section.

2 Testing Parallelized Loops

We tried, experimentally, to determine if a particular number of runs of a pro-
gram can be recommended to testers who want to be sure that a program has
been parallelized appropriately. We performed experiments in which we exam-
ined the following factors: the computer architecture involved, the number of
processors being used, the number of iterations in the loop, and the amount of
processing done in the loop.

To perform our tests, we decided to take the following sequence of steps:

– Take different kinds of data dependencies.
– Test each dependency in multiple environments. We had access to two differ-

ent environments. The first computer used in testing was a laptop, an IBM
Thinkpad with a 1.8 GHz processor, 512 MB of RAM, and Windows XP.
We also had access to another computer, a multiprocessor with two 2.8 GHz
Xeon multithreaded processors, 6 GB of RAM, and Windows XP. Visual
Studio 2005 was used on both machines to compile and execute the tests.

– Vary the number of threads used, from two to ten, and all the way to 62 in
one test by using a directive from OpenMP.

– Vary the number of iterations in the loop from 10 to 100 million.
– For different combinations of factors above, find out how many tests it takes

to uncover the error.
– Run each test 50 times, and take the average. This average is what can be

found in the tables included below.

The following four pieces of code were used for the tests:

1. Summation:

#pragma omp parallel for
for (int i = 0; i < n; i++)
x = x + 1;

An Investigation on Testing of Parallelized Code with OpenMP 127

2. Array Shift:

#pragma omp parallel for
for(int i = 0; i < (n-1);i++)
a[i] = a[i+1];

3. Summation Plus: This loop is similar to the first segment of code, but it
adds a simple inner loop, which effectively adds 100 statements to the work
being done in the parallelized loop.

4. Array Shift Plus: This loop is similar to loop 2, with a simple inner loop to
increase the amount of work being done within the parallelized loop.

Due to limited space, we show only the results of the first test below. The
following tables contain the results of the test. The different rows show how
the results changed with the size (number of iterations i.e. n in the test code)
of the loop. The columns show how the results changed with the number of
threads that were used to process the loop. The actual table cell values show
how many times (on average) the loop as a whole had to be executed for the
particular combination of number of iterations and threads to result in an error.
An error in this set of tests meant that the output from the execution of the
parallel program is different from the output from the execution of the sequential
version of the code. A tester wants the number of times that the program needs
to be executed to be small as the goal is to find the minimum number of times
the loop must be executed in order to be certain that the loop is correct.

Table 1. Loop 1 (Summation) Test Results on a laptop

Iterations \ Threads 2 4 6 8 10

100 232391 47617 62195 45124 56529
1,000 40507 2106 1554 855 854

10,000 4351 469 85 77 62
100,000 373 48 8 8 7

1,000,000 21 3 1 1 1
10,000,000 1 1 1 1 1

100,000,000 1 1 1 1 1

Several observations about the test results might be useful to a tester. The
number of threads used to execute the loop significantly affects the ability for
a tester to uncover a problem when the loop has a small number of iterations.
Increasing the number of threads from two to four has a major positive impact
on testing; but using any more than six threads does not have any advantages,
at least in the environments where the tests were run; in fact, in some situations
it even makes things worse. Also, as the number of iterations increases, the
advantage of using more threads decreases.

We believe that the previous observations can be used as guidelines. For ex-
ample, if the tester can control both the number of iterations and the number

128 R. Barnhart et al.

Table 2. Loop 1 (Summation) Test Results on a multiprocessor

Iterations \ Threads 2 4 6 8 10

100 1283401 10 1 3 4
1,000 27548 1 1 5 1

10,000 1 1 1 1 1
100,000 1 1 1 1 1

1,000,000 1 1 1 1 1
10,000,000 1 1 1 1 1

100,000,000 1 1 1 1 1

of threads used, the best situation, regardless of the environment, will be to
use two to four threads, and to force the loop to iterate a few million times.
Based on this set of experiments, this combination would be likely to uncover
an improperly parallelized loop. Running that same test multiple times would
increase the tester’s level of confidence.

Sometimes, however, the tester cannot control all of the variables in the testing
environment. This would require a larger number of tests.

The results are, in a sense, discouraging. A developer who wants to test his
code to ensure that it is correct, should run his program a large number of times
on a multiprocessor. But there is no magic number of runs that will ensure that
the parallelization is correct. The absence of errors after a large number of runs
does not guarantee that the code is correct. Better, more rigorous and robust
approaches are required.

3 Conclusion

Testing code that has been parallelized with OpenMP introduces new challenges
to the testing process. Mistakes will not be easy to detect using traditional
testing techniques as section two shows. Further research on more rigorous and
formal methods to test code that has been parallelized with OpenMP is required.
Running parallel code a large number of times alone may not be sufficient nor
practical to uncover errors.

References

1. Chandra, R., et al.: Parallel Programming in OpenMP. Morgan Kaufmann, San
Francisco (2001)

2. Tomasulo, R.: An Efficient Algorithm for Exploiting Multiple Arithmetic Units.
IBM Journal of Research and Development 11(1), 25 (1967)

3. Padua, D.A., Wolfe, M.: Advance Compiler Optimization for Supercomputers. Com-
munications of the ACM 29(12), 1184–1201 (1986)

4. Jorgensen, P.: Software Testing - A Craftsman’s Approach, 2nd edn. CRC, Boca
Raton (2002)

5. Huang, J.: A New Verification Rule and Its Application. IEEE Transactions on
Software Engineering 6(5), 480–484 (1980)

Loading OpenMP to Cell: An Effective Compiler

Framework for Heterogeneous Multi-core Chip

Haitao Wei and Junqing Yu�

College of Computer Science & Technology,
Huazhong University of Science & Technology, Wuhan, 430074, China

whtaohust@163.com, yjqing@hust.edu.cn

Abstract. The Cell employs a multi-core-on-chip design that integrates
9 processing elements, local memory and communication hardware into
one chip. We present a source to source OpenMP compiler framework
which translates the program with OpenMP directives to the necessary
codes for PPE and SPE to exploit the parallelism of a sequential pro-
gram through the different processing elements of the Cell. Some effective
mapping strategies are also presented to conduct the thread creating and
data handling between the different processors and reduce the overhead
of system performance. The experimental results show that such compiler
framework and mapping strategy can be effective for the heterogeneous
multi-core architecture.

1 Introduction

In recent two years, many processor vendors have pushed out multi-core chips with
multiple processors to improve the performance and get more efficient energy. As
one kind of heterogeneous architecture, Cell processor integrates one PowerPC
Processor Element (PPE) and eight Synergistic Processor Elements (SPE) into
one chip. To effectively develop applications on Cell, a high-level programming
model is demanded urgently, and OpenMP seems to be a good candidate.

There are a number of source-open OpenMP implementations to translate
a C program with OpenMP directives to a C program with Pthreads. In our
compiler framework, a program with OpenMP directives is separated to two
programs, one is for PPE, and the other one is for SPE. The SPE runtime
library customized for the heterogeneous feature of the Cell is utilized to build
the OpenMP runtime library.

The rest of this paper is organized as following. Section 2 introduces the Cell
architecture and the source to source compiler design. The experimental results
are presented in Section 3. Section 4 concludes this paper.

2 The OpenMP Compiler on Cell

Cell processor consists of a 64-bit multithreaded Power PowerPC processor el-
ement (PPE) and eight synergistic processor elements (SPE) connected by an
� Corresponding author.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 129–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

130 H. Wei and J. Yu

OpenMP
Compiler

SPE
Complier SPE Linker

SPE
Embedder

PPE LinkerPPE
Complier

C with
OpenMP

Cell
executable

PPE source

SPE source SPE object

PPE object

PPE library

SPE
executable

PPE Object

SPE library

Fig. 1. The OpenMP Compiler Framework for Cell

internal, high-bandwidths Element Interconnect Bus (EIB) [2]. The PPE sup-
ports Vector/SIMD Multimedia Extension (VMX) instruction set to acceler-
ate multimedia and vector application [3]. Each SPE contains non-coherent
local store for instructions and data. SPE’s instruction and data is transferred
through DMA from PPE’s main storage to SPE’s local storage. PPE and SPE
execute instructions in parallel.

The OpenMP Compiler Framework on Cell similar to CellSs [4] is illustrated
in Fig. 1. Contrasting to CellSs constituted of CellSs compiler and Cell back-
end compilers, the general structure of our compiler framework is composed of
two components: a source to source OpenMP translator/compiler front-end and
PPE-SPE combination compilers. Given a sequential C program with OpenMP
directives, the source to source OpenMP translator/compiler is used to generate
two program sources. The one is PPE source corresponding to the master thread
code, and it is compiled by the PPE compiler to generate a PPE object. The
other one is SPE source corresponding to the slave thread code, and it is compiled
by the SPE compiler to obtain a SPE object, which can be linked with the SPE
library to get a SPE executable code. Finally, the SPE embedder is used to
generate a PPE object, which is linked by the PPE linker to generate the final
executable code together with other PPE objects and PPE library.

Non-coherent memory and separate code running on Cell architecture, brings
a new challenge to OpenMP compiler. The OpenMP compiler must tackle with
the respective code generation for PPE and SPE, data distribution, and syn-
chronization.

Parallelization Division. The parallel computation needs to be split among
PPE and SPE processors. In Cell platform, PPE and SPE processors can be
viewed as a group of “threads”. The PPE starts to execute the program first,
with spawning a number of SPE spinner threads which sleep until they are

Loading OpenMP to Cell: An Effective Compiler Framework 131

needed. When a parallel construct is encountered, the SPE threads are woke up
to execute the parallel code.

Data Distribution. As the local storage belongs to the corresponding SPE,
and the main storage is shared by PPE and SPE processors, private data is
allocated in the stack and static storage of each SPE’s local storage. Shared
data is allocated in the main storage. As each SPE fetches data for computation
from the local storage, a copy of the shared data is allocated in each SPE’s local
storage by DMA transfer.

Synchronization. The mailbox and event signaling mechanism supported by
the hardware of Cell can be utilized to synchronize between SPEs and PPE.
When the “fork” point is encountered, the PPE places require in each SPE
mailbox entry to spawn a group of SPE threads to execute the corresponding
task. As to the “barrier” synchronization, each SPE thread notifies the PPE
thread by signals or mailbox.

3 Experiments and Results

In this section, mapping strategies of locality and event mechanisms are proposed
to reduce the overhead of shared data and parallel synchronization for OpenMP
program running on Cell. The experimental results of performance overhead are
measured based on the cycle accurate Cell Simulator 2.0 provided by IBM [5].

Exploitation Locality. The solution is to keep a copy of the shared data in
the local storage of each SPE instead of the direct accessing to main storage [1].
If the local copy of the shared data is updated, the changed data will be written
through DMA transfers back to the main storage after the end of parallel section.

Fig. 2 illustrates the overhead due to the exclusive accessing to the shared data
adopting two different mechanisms: atomic accessing and local accessing with
mutex variable and DMA transfer. Loop iteration, in spite of a simple operation,
may be used in most programs. In this case, a shared integer array with 128
entries is allocated in the main storage, and each SPE executes the iterations of
addition operation on each entry of the shared array. By setting 10 iterations,
the overhead of the atomic (ATOMIC1) and local (LOCAL1) mechanism for
shared data accessing are measured almost the same. But with the number of
iteration increasing to 100, the overhead of the atomic (ATOMIC2) mechanism
increases sharply, especially the number of the SPU reaches 6 and 8. Contrast
to the atomic mechanism, the overhead of local (LOCAL2) mechanism is almost
the same as the 10 iteration one (LOCAL1), except the additional accessing time
for more iteration. The local mechanism for shared data accessing experiment
reduces 40% overhead for 8 SPEs. It is shown that with the accessing frequency
increasing, a larger overhead reduction can be achieved.

Parallel Synchronization. The parallel synchronization is implemented with
the mechanisms of memory tag polling and event trigger on Cell. The first
method is to allocate a tag memory for each SPE with values initialized to

132 H. Wei and J. Yu

1spu 2spu 4spu 6spu 8spu

ATOMIC1
ATOMIC2
LOCAL1
LOCAL2
TAG POLLING1
TAG POLLING2
EVENT TRIGGER1
EVENT TRIGGER2

Fig. 2. Overhead of the Shared Data Accessing and the Parallel Synchronization

“0” and each SPE polls the tag to wait the task assigned by PPE. PPE wakes
up each SPE by setting the tag to “1”. If the tag is detected to be“1”, each SPE
runs the computation immediately. After the computation is completed, the tag
is set to “2” to notice PPE. At the same time, the PPE polls the tag until all
of them are set to “2” by the SPEs, and then the PPE cleans the tag to “1”
to resume the SPE execution. The second method is to utilize the mailbox and
signal mechanism for parallel synchronization. The PPE deploys the task to each
SPE by sending signal, once receiving the “start” signal each SPE does the work
from PPE. And at the time of barrier, each SPE will send “completion” event to
PPE by mailbox and then sleep. Once receiving all the events from SPEs, PPE
will resume the SPEs to continue to work.

As Fig. 2 illustrates, the overhead of the parallel synchronization is measured
with the mechanism of the memory tag polling and event trigger. The PPE
assigns the parallel work of array summing (like Exploitation Locality) to each
SPE, and the synchronization operation occurs at the start and the end of paral-
lel work. With the calculation increase from 10 to 100 iterations, the tag polling
mechanism (from TAG POLLING1 to TAG POLLING2) and event trigger mech-
anism shows the similar execution overhead, except the abrupt overhead increase
with 8 SPE. But, it is believed that the event trigger mechanism will be a better
candidate for parallel synchronization, besides the less little reduction than tag
polling, it also saves the storage and execution time because of its un-blocked
execution.

4 Conclusions

This paper presents a source to source OpenMP compiler framework which trans-
lates the program with OpenMP directives to the necessary codes for PPE and

Loading OpenMP to Cell: An Effective Compiler Framework 133

SPE, respectively for Cell EA. The OpenMP compiler framework proposed is
amazing, but there is a lot of work left, as for example: the effective code gen-
eration method and the improvement of data distribution and synchronization
mechanism between the PPE and the SPEs.

References

1. Eichenberger, A.E., O’Brien, J.K., et al.: Using advanced compiler technology to
exploit the performance of the cell broadband engine architecture. IBM System
Journal 45(1), 59–84 (2006)

2. Pham, D., et al.: The Design and Implementation of a First-Generation CELL Pro-
cessor. In: Proceeding of 2005 IEEE International Solid-State Circuits Conference,
pp. 184–185 (2005)

3. IBM Corporation: PowerPC Microprocessor Family: AltiVec Technology Program-
ming Environments Manual (2004)

4. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: CellSs: a Programming Model
for the Cell BE Architecture. In: Proceedings of 2006 ACM/IEEE conference on
Supercomputing, pp. 200–210 (2006)

5. IBM Corporation: IBM Full-System Simulator User’s Guide version 2.0 (2006)

OpenMP Implementation of Parallel Linear

Solver for Reservoir Simulation

Changjun Hu, Jilin Zhang, Jue Wang, and Jianjiang Li

School of Information Engineering, University of Science and Technology Beijing
No.30 Xueyuan Road, Haidian District, Beijing, P.R. China
huchangjun@ies.ustb.edu.cn, zhangjilin.bj@gmail.com

Abstract. In this paper, we discuss an OpenMP implementation of an
evolutionary LSOR method, the MBLSOR method, for solution of sys-
tem of linear equations related to reservoir simulation on SMPs.
MBLSOR method not only can improve the data locality by spatial
computational domain decomposition technique, but it also can parallel
the sub blocks with no data dependence. We compare the performance of
different parallel LSOR methods in terms of efficiency and data locality.
Numerical results on SMPs indicate that MBLSOR algorithm is more
efficient.

1 Introduction

Reservoir simulation is a very compute-intensive application often requiring large
amounts of CPU time on state of the art supercomputers. Many researchers have
focused on developing the techniques for the parallel reservoir simulation [1].
J. Shu et al. [2] developed two domain decomposition methods on shared-memory
parallel computer systems for solving a black numerical simulation of reservoir.

OpenMP [3] is an industry standard for shared memory parallel programming
agreed on by a consortium of software and hardware vendors. It is consider-
ably easier for a non-expert programmer to develop a parallel application under
OpenMP. OpenMP also permits the incremental development of parallel code.
Thus it is not surprising that OpenMP has quickly become widely accepted for
shared-memory parallel programming.

In this paper we present a new parallel implementation of LSOR linear sys-
tem solver in simulator optimized for SMPs using OpenMP. We use an evo-
lutionary technique to parallelize the LSOR solver for linear banded system,
which take most of the total execution time of a typical simulation in SMPs. Re-
sults show that the parallelization strategy can improve data locality and exploit
parallelism.

The remainder of this paper is organized as follows: In Section 2 we present a
description of linear solver. The parallelization solver and the comparison with
other parallel methods are detailed in Section 3. Section 4 shows simulation
results and the corresponding analysis, and Section 5 gives our conclusions and
future works.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 134–137, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

OpenMP Implementation of Parallel Linear Solver for Reservoir Simulation 135

2 Description of the Linear Solver

The simulator we have studied uses finite difference approximations to convert
the black oil simulator partial differential equations to the algebraic equations.

AEiPi+1 + AWiPi−1 + ANjPj+1 + ASjPj−1 +
ABkPk+1 + ATkPk−1 + Ei,j,kPi,j,k = bi,j,k (1)

The solution of LSOR method in the simulator is oriented implicitly along
x-axis and explicitly along other axes. For an x-line (along the x-axis) LSOR the
linear matrix system of equation reduces to the following tridiagonal system:

AWi,j,kPn+1
i−1,j,k + Ei,j,kPn+1

i,j,k + AEi,j,kPn+1
i+1,j,k = bi,j,k − NPn

i,j,k (2)

Pn+1 and Pn represent the pressure matrices at n+1 and n time step respec-
tively. This tridiagonal system is then solved by direct method in simulator. As
an extension of SOR theory, LSOR require that all points in a line be solved
first implicitly (using a tridiagonal system of equations), and then these values
would be appropriately weighted using ω. As we proceed from line to line, the
updated values of the unknowns from the previous line could be used.

3 Parallel Implementation of MBLSOR

The LSOR(SOR) method is inherently sequential due to embarrassingly par-
allel, and data locality is worse in three dimensions when the number of grids
increases. Many researchers have focused on developing the techniques for the
parallel SOR method[4-7]. The MBLSOR (Multi Block Line Successive Over
Relaxation) method, which we have developed, can improve three different per-
formance aspects: inter-iteration data locality, intra-iteration data locality and
parallelism. Intra-iteration locality refers to cache locality upon data reuse within
a convergence iteration, and inter-iteration locality refers to cache locality upon
data reuse between convergence iterations. The MBLSOR method executes con-
vergence spatial computational domain iterations in a sub-block-by-sub-block
fashion. Each sub-block contains computations from multiple convergence iter-
ation for a sub set of unknowns along one axis. Using this algorithm, the above
three performance aspects can be obtained by selecting the sub-blocks for im-
proved inter-iteration locality and ordering lines of unknowns for intra-iteration
locality, and executing the independent sub-block in parallel.

Implementation of this algorithm is straightforward as follows:

Step 1: Divide the spatial computational domain into desired sub-domains.
The whole domain A is partitioned into m (the number of CPU) sub-
domains. Each sub-domain owns T/m x-lines of unknowns. To be en-
sured load balance of computation between CPUs, we should amend
the partition of domain A. the first CPU has T/m − (k/m) x-lines of
unknowns ,the last CPU has T/m+(k/m) x-lines, and others have T/m
x-lines.

136 C. Hu et al.

Step 2: Divide the spatial computational sub-domain to desired sub-blocks. If
the size of cache is equal to the memory requirements for b x-lines of
unknowns, the number of sub-block will be T/m(b − k).

Step 3: Indicate the number for sub-blocks. The amendment algorithm use the
numbering method to indicate the execution order for adjacent sub-
block due to data dependence, thus the partition numbering affects the
data dependence direction between sub-blocks. In order to exploit par-
allelism, number of each sub-block must be given by using cyclic(m)
method.

Step 4: Amend the boundary of each spatial computational sub-block to reuse
data before the cache-line is evicted.

Step 5: Parallel update sub-blocks where there is no data dependence. After
the first m sub-blocks parallel executed, other sub-blocks computation
in difference sub-domains can be parallel executed but sub-blocks in one
sub-domain must be serial Updated.

Step 6: Using step 5, if it is not convergent we can update the next spatial
computational domain.

For shared memory parallel processing, the synchronization time is the
amount of time that processors are waiting for data dependent results that are
generated by other processors. The minimized synchronization time can improve
parallel efficiency. For domain decomposition LSOR, there is intra-iteration syn-
chronization because adjacent cells between different partitions depend on each
other. For above two traditional parallel methods, the synchronization barri-
ers between all convergence iterations also cause parallel inefficiency. But for
MBLSOR method, there are only synchronization issues between sub-domains
and between several convergence iterations.

Both multi-color and domain decomposition LSOR methods must execute all
the iteration points within one convergence iteration before the next convergence
iteration. If the subset of unknowns assigned to a processor does not fit into
cache, no inter-iteration locality occurs. MBLSOR method can update multiple
convergence iterations over a subset of the unknowns, and the size of sub-block
can fit into cache. Thus, theoretically, MBLSOR can improve the inter-iteration
locality. In next section, we will validate the above analysis.

4 Performance Results

In this section, we show simulation results for the MBLSOR, which used in the
reservoir simulator with OpenMP directives. All performance tests were con-
ducted on a SMP system with Intel Xeon 3.0G/512K L2 Cache and 2GB mem-
ory. The operating system is RedHat Linux version FC3, with kernel 2.6.9. The
implementation of the MBLSOR is compiled with Intel Fortran compiler 8.0
version under the option -openmp. We use the sparse matrices generated from
the following grid sizes: 2,250,000 grid blocks (equivalent to a grid of dimensions
150 x 150 x 100).

OpenMP Implementation of Parallel Linear Solver for Reservoir Simulation 137

The time taken with the serial version MBLSOR is 1385 seconds while the
parallel version takes 710 seconds. The speed-up ratio for this method in two
processors is equal to 1.95. The actual speedup is smaller than the ideal speedup.
This is likely caused by the fork-join overhead. We also measured the 2nd level
cache load misses retired of serial LSOR and MBLSOR. The second example is
from 300x100x300 grids. We can find that the 2nd level cache load misses retired
are 61.9% and 35.1% respectively. From the above observation we find that data
locality can help to improve the efficiency of LSOR.

5 Conclusions

In this paper, we described an efficient OpenMP implementation of a linear solver
in black oil reservoir simulation system for SMPs. A novel MSLSOR method
presented to improve data locality as well as parallelism, which is solution of
system of banded linear equations. Simulation results show that the speed-up
obtained is near the maximum speed-up, which indicates low synchronization
overhead and good load balancing among processors.

Acknowledgements

The research is partially supported by the Key Technologies Research and Devel-
opment Program of China under Grant No.2006038027015, the Hi-Tech Research
and Development Program (863) of China under Grant No. 2006AA01Z105, Nat-
ural Science Foundation of China under Grant No.60373008, and by the Key
Project of Chinese Ministry of Education under Grant No. 106019.

References

1. Zhlyuan, M., Fengjiang, J., Xiangming, X., Sunjiachang: Simulation of Black oil
Reservoir on Distributed Memory Parallel Computers and Workstation Cluster. In:
International meeting on petroleum engineering, Beijing, pp. 14–17 (1995)

2. Jiwu, S., Lizhong, G., Weisi, Z., Defu, Z.: Parallel computing of domain decom-
position methods for solving numerical simulation of black of reservoir. Journal of
Nanjing University 35(1) (January 1999)

3. OpenMP application program interface, ver 2.5, Tech. report (May 2005),
http://www.openmp.org/

4. Xie, D., Adams, L.: New parallel method by domain partitioning. SIAM J. Sci.
Comput. 27, 1513–1533 (2006)

5. Niethammer, W.: The SOR method on parallel computers. Numer. Math. 56,
247–254 (1989)

6. Evans, D.J.: Parallel SOR iterative methods. Parallel Computing 1, 3–18 (1984)
7. Hofhaus, J., Van de Velde, E.F.: Alternating-Direction Line Relaxation Methods on

Multicomputers. SIAM Journal of Scientific Computing (2), Society of Industrial
and Applied Mathematics, 454–478 (March 1996)

http://www.openmp.org/

Parallel Data Flow Analysis for OpenMP

Programs

Lei Huang, Girija Sethuraman, and Barbara Chapman

University of Houston, Houston TX 77004, USA
{leihuang,girija,chapman}@cs.uh.edu

Abstract. The paper presents a compiler framework for analyzing and
optimizing OpenMP programs. The framework includes Parallel Control
Flow Graph and Parallel Data Flow equations based on the OpenMP re-
laxed memory consistency model. It enables traditional compiler analyses
as well as specific optimizations for OpenMP. Based on the framework,
we describe dead code elimination and barrier elimination algorithms.
An OpenMP code example is showed in the paper to illustrate the opti-
mizations. The framework guarantees that the traditional optimizations
can be performed safely to OpenMP programs, and it further increases
the opportunities for more aggressive optimizations.

1 Introduction

OpenMP [7] and PThreads [2] are the most widely used programming models for
parallelizing applications in shared memory systems. Whereas PThreads often
requires major reorganization of a program’s structure, the insertion of OpenMP
directives is often straightforward. OpenMP directives impose a structured pro-
gramming style with a simple means for synchronization that helps avoid some
kinds of programming errors. A compiler translates an OpenMP code to threaded
C/C++, Fortran code that will be linked with a thread library. It is easier for a
compiler to analyze an OpenMP code than its corresponding threaded code due
to its very structured style. However, most compilers do not exploit the fact to

#pragma omp s i n g l e
{

k = 1 ;
}
i f (k==1) . . .

(a) An OpenMP
program with single
construct

mpsp status = ompc s ing l e (ompv temp gtid) ;
i f (mpsp status == 1)
{

k = 1 ;
}

ompc end s ing l e (ompv temp gtid) ;

i f (k==1) . . .

(b) The corresponding compiler translated threaded
code

Fig. 1. A compiler translated OpenMP code

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 138–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parallel Data Flow Analysis for OpenMP Programs 139

analyze an OpenMP code. There is little or no optimization in most OpenMP
compilers [8,6] before an OpenMP code is translated to a threaded code. Fig. 1
shows an OpenMP code and a compiler generated threaded code after the trans-
lation. Based on OpenMP semantics, it is known that k is equal to 1 after the
OpenMP single construct. However, in the translated code, a compiler is not sure
if k is equal to 1 or not at the if(k==1) statement since the value of mpsp status
is unknown at compile time.

2 OpenMP Memory Model

As described in [4] and OpenMP 2.5 specification, OpenMP is based on the
relaxed consistency memory model, which means that each thread is allowed
to have its own local view of shared data. The local value of a shared object
may or may not be consistent unless there is a flush operation to force the
value to be consistent over all threads. Besides the OpenMP flush directive,
OpenMP synchronization mechanism (omp barrier, omp critical, omp atomic,
and locks) contain implicit flush to make the data consistent. Most OpenMP con-
structs have implicit barriers at the end of them to ensure the synchronization
of threads execution and keep the data consistent between them. An aggressive
optimizing compiler can safely assume that there is no inter-thread data inter-
actions until a flush operation has been reached. The OpenMP memory model
simplifies the compiler analysis for parallel programs since a compiler can per-
form traditional analysis and optimizations safely between two synchronization
operations. Therefore, most OpenMP compiler performs compiler optimizations
after OpenMP has been translated to a threaded code, and limits the sequential
analysis and optimizations to be performed only between two synchronizations.

3 Parallel Data Flow Analysis Framework for OpenMP

The idea of PCFG is similar to Program Execution Graph [1] and the Synchro-
nized Control Flow Graph [3]. The distinction between our PCFG with them is
that our PCFG is based on barrier and flush synchronizations, instead of event
based synchronizations (such as post-wait). The PCFG is a directed graph (N,
E, s, e), where N is the set of nodes including basic nodes, composite nodes,
super nodes, and barrier nodes; E is a set of directed edges including sequential
edges and parallel edges; s and e represent the entry and exit of a parallel region,
respectively. A basic node is a basic block, or contains a omp flush directive.
A composite node is composed of an OpenMP worksharing or synchronization
construct and the basic nodes associated with it. A barrier node contains omp
barrier directive only. A sequential edge indicates the sequential control flow
within a thread. A parallel edge indicates a branch that more threads may take.

Fig 2 shows how the composite nodes containing worksharing directives are
connected by parallel and sequential edges. In Fig 2 A and B, different threads
may take different paths, so that parallel edges represent the branches for differ-
ent threads. In Fig. 2 C, the omp for loop will be executed by all threads, and

140 L. Huang, G. Sethuraman, and B. Chapman

Fig. 2. OpenMP Worksharing Constructs in PCFG

we use a sequential edge to connect it. Based on the omp for directive semantics,
the enclosed loop should not have any data dependence. We treat the loop as a
sequential loop in the PCFG. Fig. 2 D presents the PCFG for omp critical con-
struct. A critical section is executed by multiple threads one by one, but never
at same time. It is similar to the execution of a loop in a sequential program in
terms of data propagation. We create a backward edge in the critical construct,
so that a data defined in the critical region will be visible by next thread when
it executes the critical section.

We introduce new equations in Parallel Data Flow Analysis(PDFA) to handle
the distinctions between sequential and parallel data flow analysis as follows.

Super Node (S) Equations: A super node contains one or more compos-
ite nodes between two barrier nodes. The equation In(s) is the Out(entry) or
Out(Previous Barrier), and the Out(S) is a union of all composite nodes that di-
rectly reach the end of the super node. A flush set Flush(S) needs to be gathered
in a super node, since a flush operation performs inter-thread data flow inside a
super node.

Flush(S) =
⋃

b∈BasicNode(S)

Flush(b) (1)

We also need to compute the definitions that are killed in a super node. In a
parallel program, if a definition has been killed in at least one of composite nodes
inside a super node, it cannot reach the next super node. We need to perform
a union operation for all must-be-killed definitions of all composite nodes in a
super node. We define MustKill(S) of a super node to be a set of must-be-killed
definitions in its all enclosed composite nodes.

MustKill(S) =
⋃

C∈CompositeNode(S)

MustKill(C) (2)

Parallel Data Flow Analysis for OpenMP Programs 141

Composite Node (C) Equations: A composite node contains one or more
basic nodes. We are interested in the intra-thread data flow, and the must-be-
killed definitions in a composite node. The equation In(C) is a union of Out(C)
of all previous composite nodes or In(S) of its super node. Out(C) is a union of
its basic nodes that directly reach the end of the composite node. Intuitively, if a
definition appears in the beginning of of a super node, but does not reach the end
of a composite node inside the super node, it is included in the MustKill(C) set.

MustKill(C) = In(S) − Out(C) (where S is the super node of C) (3)

Basic Node (b) Equations: We compute data flow equations for each basic
node similarly with them in a sequential DFA. In addition, we need to handle
inter-thread data flow by flush operations. We have the following modifications
of equations for each basic node b:

Out(b) = (In(b) − Kill(b))
⋃

Gen(n)
⋃

Flush(S)

(Where S is the super node enclosing b) (4)

Flush(b) =

⎧
⎪⎪⎨

⎪⎪⎩

⋃
v (v ∈ variables specified in the flush

directive)
all shared variables (if the flush does not specify

any variables)
(5)

Barrier Node (Barrier) Equations: At a barrier point, threads wait until
all threads reaching the point. It then flushes all shared variables before all
threads execute the next super node. The In(Barrier) equation is a union of all
predecessors. And the Out(barrier) set should exclude all definitions that must
be killed in the previous super node.

Out(Barrier) = (In(barrier) − MustKill(S))
(where S is the previous super node of the barrier) (6)

3.1 Compiler Optimizations

Based on the above Parallel Control Flow Graph and Parallel Data Flow equa-
tions, we are able to perform traditional optimizations before an OpenMP code
is lowered to a threaded code. A lowered threaded code may lose the structure
of threads execution and interactions, and make it difficult for a compiler to
optimize it globally. We can compute the data flow information such as reaching
definitions based on the PDFA. Inter-thread and intra-thread use-definition and
definition-use chain can be calculated and traditional optimizations such as copy
propagation, dead code elimination, and partial redundancy elimination(PRE)
etc. can be performed. Moreover, Barrier elimination is an optimization for par-
allel programs to remove redundant barriers so as to improve the performance.
We can perform optimizations specific to parallel programs such as Barrier elim-
inataion based our PCFG and PDFA equations. Due to the page limit in this
paper, we will present the algorithm of these optimizations in the future.

142 L. Huang, G. Sethuraman, and B. Chapman

4 Conclusion and Future Work

The contribution of the paper is to present a compiler framework that enables
high-level data flow analysis and optimizations for OpenMP by taking its se-
mantics into consideration. The framework represents the intra- and inter-thread
data flow in OpenMP based on the relaxed memory model. It enables classical
global optimizations to be performed before an OpenMP code is lowered to a
threaded code. Moreover, a compiler is able to perform more aggressive optimiza-
tions specific to OpenMP programs. In the future work, We will implement it
into the OpenUH compiler [6] to further evaluate the work. We will explore more
compiler optimizations based on the framework in cluster OpenMP implementa-
tion [5]. It could also be used in static analysis for detecting race conditions of an
OpenMP program. We believe that the framework will lead to more aggressive
optimizations and analysis for OpenMP.

References

1. Balasundaram, V., Kennedy, K.: Compile-time detection of race conditions in a
parallel program. In: ICS 1989. Proceedings of the 3rd international conference on
Supercomputing, pp. 175–185. ACM Press, New York (1989)

2. Buttlar, D., Nichols, B., Farrell, J.P.: Pthreads Programming. O’Reilly & Associates,
Inc., Sebastopol (1996)

3. Callahan, D., Kennedy, K., Subhlok, J.: Analysis of event synchronization in a paral-
lel programming tool. In: PPOPP 1990. Proceedings of the second ACM SIGPLAN
symposium on Principles & practice of parallel programming, pp. 21–30. ACM Press,
New York (1990)

4. Hoeflinger, J.P., de Supinski, B.R.: The openmp memory model. In: The 1st Inter-
national Workshop on OpenMP (IWOMP 2005) (2005)

5. Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to Global Arrays. Parallel Computing 31(10-12)
(2005)

6. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An opti-
mizing, portable OpenMP compiler. Concurrency and Computation: Practice and
Experience, Special Issue on CPC 2006 selected papers (2006)

7. OpenMP: Simple, portable, scalable SMP programming (2006),
http://www.openmp.org

8. Tian, X., Bik, A., Girkar, M., Grey, P., Saito, H., Su, E.: Intel OpenMP C++/
Fortran compiler for hyper-threading technology: Implementation and performance.
Intel Technology Journal 6, 36–46 (2002)

http://www.openmp.org

Design and Implementation of OpenMPD:

An OpenMP-Like Programming Language for
Distributed Memory Systems

Jinpil Lee, Mitsuhisa Sato, and Taisuke Boku

Department of Computer Science
Graduate School of Systems and Information Engineering

University of Tsukuba

Abstract. MPI is a de facto standard for parallel programming on dis-
tributed memory system although writing MPI programs is often a time-
consuming and complicated work. We propose a simple programming
model named OpenMPD for distributed memory system. It provides di-
rectives for data parallelization, which allow incremental parallelization
for a sequential code as like as OpenMP. The result of evaluation shows
that OpenMPD archieves 3 to 8 times of speed-up with a PC cluster with
8 processors with a small modification to the original sequential code.

1 Introduction

PC clusters are the typical platform for low cost high performance computing,
and most of users code their program with MPI[6]. Since the MPI functions
provide a variety of features to be applied to various parallelizing algorithm, it
requires a complicated and tiresome parallel coding to users.

In this paper, we propose a new paradigm named OpenMPD based on Open-
MPI [2] (caution: not “Open MPI”, an MPI implementation), which is a concep-
tual model for easy MPI programming. OpenMPD which introduces a simple but
effective features to describe typical scientific applications with a similar concept
of OpenMP[5], a programming model on a shared memory system. OpenMPD
provides OpenMP-like directives to describe array distribution and work sharing
on the loop on parallel processes for data parallel programming.

Existing parallel programming languages or models for distributed memory
system such as CAF (Co-Array Fortran)[3] or UPC (Unified Parallel C)[4] pro-
vide various features to describe parallel programs and to execute them in high
efficiency. However, these features are complicated for most of users, and the
implementation is invisible from them. It makes users difficult to write and op-
timize their code. On the designing of OpenMPD, we especially considered the
simple and easily understandable concept of data parallel programming.

2 Overview of OpenMPD

The concept of Data parallel programming is relatively simple. Many applica-
tions can be parallelized by a few typical techniques. But MPI programming

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 143–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

144 J. Lee, M. Sato, and T. Boku

Fig. 1. Array distribution and sleeve syn-
chronization

int u[1024][1024];

int v[1024][1024];

#pragma ompd distvar\

(var=u;dim=2;sleeve=1)

#pragma ompd distvar(var=v;dim=2)

func(){

int i,j,iter;

for(iter=0; iter<100; iter++){

#pragma ompd sync_sleeve(u)

#pragma ompd for affinity(uu)

for(i=0; i<1024; i++)

for(j=0; j<1024; j++)

v[i][j]=(u[i-1][j]+u[i+1][j]+

u[i][j-1]+u[i][j+1])/4;

#pragma ompd for affinity(u)

for(i=0; i<1024; i++)

for(j=0; j<1024; j++)

u[i][j]=v[i][j];

}

}

Fig. 2. Program Example of OpenMPD

is often time-consuming because it requires a large modification of original
code. OpenMPD is a language extension for programming on distributed mem-
ory systems to relieve users from such bothering MPI programming. Currently,
C-language version of OpenMPD is only available. And the underlying parallel
execution environment is MPI.

Programmer is responsible to discribe appropriate directives with their pa-
rameters to the original sequential code to parallelize it with implicit message
passing features(currently, MPI). The Sequential code can be parallelized by a
minimum modification. It makes parallel programming on distributed memory
system more simple than message passing paradigm.

OpenMPD supports a typical parallelization based on data parallism, which
is well used in varoius scientific applications. The following is brief explanation
of data parallelization in OpenMPD, which can be described by directives.

– Because OpenMPD is implemented based on MPI, OpenMPD programs are
excuted in SPMD(Single Program Multiple Data) model.

– OpenMPD supports global array distribution (supports block distribution,
by directive distvar) and work sharing on for loop(directive for) which is
basic features of data parallelism. affinity is an option to make work sharing
assosiated to the array distribution. In consequence, each process on PC
cluster refers a partial region of the array(see Fig.1.a).

– For synchronizaion of arrays, OpenMPD provides two kinds of methods. First
one is, all-to-all data exchanging on parallel processes (array gathering, di-
rective gather). This method is effective when you need random access to

Design and Implementation of OpenMPD 145

the array. But it requres expensive communication cost at the same time.
Second one is sleeve synchronization(directive sync sleeve). “Sleeve” is a
border region of a distributed array. In Fig.2, it is enough to exchange the
one boundary elements(see Fig.1.b). Since this kind of synchronization ap-
pears frequently in scientific applications, OpenMPD provides the directive
to describe it easily.

– Variables of basic types in C can be also synchronized by OpenMPD di-
rectives. Directive sync var describes synchronization by broadcasting data
from one process. Directive reduction describes collective communication
among the processes. It can be used as an option of directive for.

– When the program can be devided into several functional block, some of them
may be excuted independently. Directive single discribes block-statement(in
C language) to be excuted on one process. By using single directive, func-
tional independent block-statements can be excuted in parallel.

Fig.2 shows an typical program of OpenMPD solving a differential equation
with a finite differencing method. The lines starting with #pragma are Open-
MPD derectives to describe parallelization.

3 Implementation and Performance Evaluation

The compiler of OpenMPD is developed based on Omni OpenMP Compiler[7].
It translates the source code referring the directives to an MPI parallel code
with supplement library function calls. At the code execution, these run-time
library functions handle the distribution of array variables and inter-process
communication with MPI functions. Therefore, the translated code and the run-
time library functions are regarded as a complete MPI program with portability.
And users can use MPI functions explicitly in OpenMPD code to optimize the
performance.

Next, we show the performance of parallelized code by OpenMPD. We used
a small Intel Xeon PC cluster with 8 nodes(1GB memory and 1000base-T Eth-
ernet). The MPI library is LAM/MPI version 7.0.6.

We evaluated three benchmarks; NAS Parallel Benchmark[8] EP (NPB-EP)
and CG (NPB-CG), and Himeno Benchmark[9] (HIMENO). These benchmark
programs can be easily coded by OpenMPD in a simple domain decomposition
manner.

Fig.3.a shows the speed-up of all benchmarks parallelized by OpenMPD and
MPI(official version) when increasing the number of nodes. NPB-EP shows the
excellent speed-up because there is no communication overhead, and OpenMPD
handles it reasonably. For HIMENO, the speed-up from 4 to 8 nodes is degraded
due to communication overhead and incomplete parallelization. Since the in-
terconnection network of the tested PC cluster is Gigabit Ethernet, the com-
munication performance is poor compared with the CPU power. We think the
result is reasonable and we can achieve higher performance with more powerful
interconnection network. The two benchmarks show almost the same spped-
up compared with the MPI version. But NPB-CG shows worse performance as

146 J. Lee, M. Sato, and T. Boku

Fig. 3. Evaluation result

compared with other benchmark results. It is because that current implemen-
tation of OpenMPD does not support multi-dimensional distribution of array.
We are now fixing the implementation to handle this problem. Fig.3.b shows
the code size of OpenMPD and MPI version comparing with the serial code.
It proves that OpenMPD needs very small modification to the serial code to
parallelize.

Through the performance evaluation, we could confirm that the simple direc-
tives of OpenMPD are applicable for variety of codes without heavy effort and
the compiler and functions of OpenMPD processing system work correctly.

4 Current Status and Future Work

Current implementation is very simple and we need to enhance it to apply our
method to wider fields of applications and improve the performance and scal-
ability. One of the interesting issue is a hybrid utilization of OpenMPD with
OpenMP for easy and efficient hybrid programming to combine multi-thread
and message passing features on SMP clusters.

References

1. Sato, M., Satoh, S., Kusano, K., Tanaka, Y.: Design of OpenMP Compiler for an
SMP Cluster. In: Proc. of 1st European Workshop on OpenMP EWOMP 1999, pp.
32–39 (1999)

2. Boku, T., Sato, M., Matsubara, M., Takahashi, D.: OpenMPI - OpenMP like tool
for easy programming in MPI. In: Proc. of 6th European Workshop on OpenMP
(EWOMP 2004), pp. 83–88 (2004)

3. Co-Array Fortran, http://www.co-array.org/

http://www.co-array.org/

Design and Implementation of OpenMPD 147

4. Unified Parallel C, http://upc.gwu.edu/
5. OpenMP.org, http://www.openmp.org
6. The Message Passing Interface (MPI) standard,

http://www-unix.mcs.anl.gov/mpi/

7. Omni OpenMP Compiler Project, http://phase.hpcc.jp/Omni/home.ja.html
8. NAS Parallel Benchmarks,

http://www.nas.nasa.gov/Resources/Software-/npb.html

9. http://w3cic.riken.go.jp/E/HPC e/HimenoBMT e/index e.html

http://upc.gwu.edu/
http://www.openmp.org
http://www-unix.mcs.anl.gov/mpi/
http://phase.hpcc.jp/Omni/home.ja.html
http://www.nas.nasa.gov/Resources/Software-/npb.html
http://w3cic.riken.go.jp/E/HPC_e/HimenoBMT_e/index_e.html

A New Memory Allocation Model for Parallel

Search Space Data Structures with OpenMP

Christophe Jaillet and Michaël Krajecki

CReSTIC SysCom, Université de Reims Champagne-Ardenne
Moulin de la Housse, BP 1039, 51687 Reims cedex 2

{christophe.jaillet,michael.krajecki}@univ-reims.fr

Abstract. OpenMP is a shared memory programming API (see [2] or
http: // www. openmp. org), brought on UMA and CC-NUMA architec-
tures, which supports multithreaded applications.

The present study deals with the management and arrangement of
memory, which may cause useless memory blocks reloading from the
shared memory to the processors caches. This occurs for some memory
access sensible applications, when programming with OpenMP: cache
faults may congest the system and induce a communication over-cost
between the processors. A new memory allocation model is presented,
enabling us to solve the memory contention phenomenon in the specific
case of shared memory programming with OpenMP.

Keywords: Parallel systems, memory allocation, shared memory,
OpenMP.

1 Introduction

Programming parallel applications in shared memory offers an effective solution
for the execution of applications that require significant computing efforts and
long computing times. These applications may suffer the consequences of an
execution times variability when programmed in OpenMP. This paper presents
this phenomenon and offers a low cost solution which, moreover, improves the
applications efficiency.

We currently are working in the field of combinatorial search and combinato-
rial optimization. The methods we implement [6] are based on the CSP formalism
and can be coarsely reduced to a tree search algorithm. The parallelization of the
applications results from a tasks generation, based on the tree development at a
chosen depth-level [3]. After the tasks generation, the performance of the parallel
applications is linked to three essential critical points: the tasks granularity, the
load balancing and the data locality.

The generated tasks obtained are relatively independent and can be treated
in any order, but are highly irregular (in computational time); thus a specific
dynamic load balancing strategy is necessary. The average granularity can be
chosen by fixing the tree development depth-level to any value, which essentially
depends on the size of the selected instance and the estimated execution time.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 148–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.openmp.org

A New Memory Allocation Model for OpenMP 149

The applications developed are particularly linked to memory accesses, with
quite few specific additional computation, so the memory accesses are essential
for the performances: here is the core of the current study.

2 Computational Times Variability Using OpenMP

When executing our OpenMP applications in parallel, we can observe a high
degree of variability of the computational times, especially with an increasing
number of processors. Tuning the executions reveals a large number of processors
synchronizations, caused by cache faults [4], that are not reproducible from one
execution to the other.

This phenomenon is linked to the use of OpenMP since no such variability
appears when programming in the same manner with pThreads.

It has to be noted that such a variability was observed on each of the architec-
tures we worked on: SMP nodes (IBM SP3/SP4), SMP clusters (SunFire 6800),
CC-NUMA machine (SGI Origin 3800, hypercube of SMP nodes).

Table 1. Computational times variability with OpenMP - L(2,14), Miller method,
depth-level 5: best execution times; relative standard deviations (SGI Origin’3800).
[ClSe: Client-server strategy – SeI: Server Initiated schedule].

procs stq0 stq mod0 mod dyn0 ClSe SeI

1 223,13 234,41 224,26 223,08 234,70 234,43 223,10
0,1% 0,0% 0,1% 0,1% 0,0% 0,0% 0,2%

2 119,50 119,50 116,40 116,40 114,72 116,23 112,47
24,9% 34,5% 39,4% 42,2% 41,4% 40,0% 61,6%

32 22,81 24,37 7,42 26,17 7,03 9,47 23,69
47,1% 30,4% 321,1% 27,5% 189,7% 40,2% 15,3%

64 16,46 17,97 17,45 16,04 4,24 5,61 12,12
27,6% 21,6% 30,3% 26,0% 98,1% 48,1% 10,6%

As an illustration, Table 1 gives computational times and relative standard
deviations observed for 50 executions, solving the L(2,14) instance of the Lang-
ford problem [5] with a C/OpenMP program on a SGI Origin’3800 (R14000
processors, 500MHz, 500MB/proc.): it compares various native/hand-made par-
allel loop parallelization schemes. As the execution times were very irregular, we
had to repeat the experiments from 20 to 50 or 100 times in order to measure
the best observed time as a normal conditions execution time.

For 32 processors, for example in an OpenMP native modulo parallel loop,
only 12 of the 50 executions gave a result close to the 7 seconds awaited time,
whereas 13 of them lasted 22 to 26 seconds, and half of them consumed 55 to 65
seconds: the relative standard deviation observed is 320%.

150 C. Jaillet and M. Krajecki

2.1 Multithreaded Processes in Shared Memory

On a multiprocessor shared memory system, the threads execute themselves
simultaneously on different processors, and communicate/synchronize through
shared memory. Each thread can access the process’s memory, with read/write
asynchronous accesses, but may have a private storage place1. In the particular
case of our applications, the threads use a significant amount of shared memory
(for tasks descriptions storage), compute in their local storages, and use a small
part of the shared memory to communicate (store/accumulate the tasks results).

On most multiprocessor systems, each processor disposes of its own cache
memory unit. Assuming each thread is executed by a processor, it can be con-
sidered that each thread disposes of its own cache memory. The coherence of the
global memory is ensured by caches coherence software/material systems [1], as
illustrated by Fig. 1. The transfers to the caches are realized by lines.

normal reloading

shared memory

invalidated
line

(updated data)
read only read/write

thread 2 thread 1 thread n

thread 0

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

Fig. 1. Multithreaded process memory representation (virtual memory) - Cache mem-
ory management of shared memory

2.2 Execution Times Variability with OpenMP: A Solution

According to the POSIX standard, the memory spaces of any two threads are
separated so they can not share data in a common cache line. As the high vari-
ability rate observed does not occur with pThreads, we proposed the hypothesis
that the OpenMP memory pages manager enables the threads to share memory
pages, as shown in Fig. 2.

read only

nshared memory

shared
memory linesdividing into cache lines read/write

6 7 191150

thread 0 thread 1 thread 2 thread

���
���
���

���
���
���

��
��
��
��

Fig. 2. OpenMP memory allocation scheme (conjecture): memory lines shared by the
threads or with shared memory

1 A part of the process’s memory, entierly shared, kept as private for a given thread.

A New Memory Allocation Model for OpenMP 151

When a thread modifies the content of such a critical memory zone, it induces
modifications of some cache line with data associated with another thread zone
or with shared memory, and thus causes useless cache faults and cache lines
reloading.

A new memory allocation model is proposed that avoids the different cache
faults described above by using with free zones (unused memory segments) sep-
arating sensible memory blocks (see Fig. 3).

Using this new memory allocation model immediately corrected the execution
irregularity, bringing cache faults rates are to the same level as with pThreads,
hence limited to those necessary for the shared memory management. Added
to the variability reduction, we even got a 3% improvement of the application
performance.

threads

thread n

0 7 198 1 10 1

shared memory

read/writeread only

shared memory

added "free zone"mixed

thread 0 thread 1 thread 2

������
������
������
������
������
������

������
������
������
������
������
������

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���

���
���
���

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

Fig. 3. Memory allocation model preventing useless cache faults, by separating the
critical memory zones

3 Conclusion

In the field of combinatorial search/optimization, parallel applications use a large
amount of shared memory and are very sensible to the memory management,
especially for the cache memory accesses. We mentioned a high degree of compu-
tational times variability when programming with OpenMP, and proved that it
is directly related to cache faults between the threads of the application process.

The solution proposed consists in adding some additional memory spaces in
order to isolate the sensible zones from one another. It solves the problem without
degrading the applications parallel performances.

We currently are working on a refained allocation model that may avoid any
execution times variability for the parallel applications having an intensive use
of the memory and of the data caches, and improve their performances.

Acknowledgement. Part of this work is supported by ROMEO II, regional
high performance computating center of Champagne-Ardenne.

References

1. Adve, S., Adve, V., Hill, M., Vernon, M.: Comparison of Hardware and Software
Cache Coherence Schemes. In: Proceedings of ISCA 1991, pp. 298–308. ACM, New
York (1991)

2. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel
Programming in OpenMP. Morgan Kaufmann, San Francisco (2000)

152 C. Jaillet and M. Krajecki

3. Habbas, Z., Krajecki, M., Singer, D.: Parallel Resolution of CSP with OpenMP. In:
Proceedings of EWOMP 2000, pp. 1–8 (2000)

4. Itzkowitz, M., Wylie, B.J.N., Aoki, C., Kosche, N.: Memory Profiling using Hard-
ware Counters. In: Proceedings of HPNC 2003, p. 17. ACM, New York (2003)

5. Jaillet, C., Krajecki, M.: Solving the Langford Problem in Parallel. In: Proceedings
of ISPDC 2004, pp. 83–90. IEEE Computer Society, Los Alamitos (2004)

6. Krajecki, M., Jaillet, C., Bui, A.: Parallel Tree Search for Combinatorial Problems: a
Comparative Study between OpenMP and MPI. Studia Informatica Universalis 4(2),
151–190 (2005)

Implementation of OpenMP Work-Sharing on

the Cell Broadband Engine Architecture

Jun Sung Park, Jung-Gyu Park, and Hyo-Jung Song

Samsung Electronics

Abstract. The Cell Broadband Engine (CBE) is a single-chip multi-
processor composed of one Power Processor Element (PPE) core and
multiple Synergistic Processor Element (SPE) cores. Due to the het-
erogeneous processor type of the CBE, multi-core programming for the
CBE is very difficult which can be alleviated by OpenMP. In this pa-
per, we introduce some issues in implementing OpenMP work-sharing
constructs on the CBE. To address overheads in creating and manag-
ing work-sharing control blocks across different processor types, we have
come up with a method for aggressively reusing the work-sharing con-
trol block by precisely checking the reusability of it. This scheme allows
us better performance over naive implementation of work-sharing con-
structs, when evaluated with modified EPCC benchmark.

1 Introduction

The Cell Broadband Engine (CBE) [1] is relatively new architecture which tar-
gets intensive computation such as multimedia streaming and game applications,
as it is used in PlayStation 3. It can provide both performance and flexibility
for wide range of devices including HDTV sets and home servers by allowing
downloadable software module (i.e. codec) running as fast as hardware module.
However, implementing software on a CBE processor requires a good under-
standing of the processor architecture. OpenMP can be one candidate to reduce
these efforts. Because of hardware features of the CBE, implementing OpenMP
for the CBE should be carefully considered to get utmost performance.

1.1 The Cell Broadband Engine Architecture

The CBE architecture is a heterogeneous multiprocessor composed of one 64-bit
Power Processor Element (PPE) and eight specialized coprocessors called Syn-
ergistic Processor Elements (SPEs), interconnected by a high-bandwidth bus
interface. The PPE runs operating system, manages main memory, and coor-
dinates the SPEs. The SPE has a processor unit capable of SIMD computa-
tion, 256-KByte local-store memory (LS) for program and data, and a memory
flow controller (MFC) which allows DMA to the main memory. Communication
overheads between processing elements (i.e. synchronization and main memory
access), although they are connected over high-bandwidth bus, are in no way
negligible.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 153–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 J.S. Park, J.-G. Park, and H.-J. Song

Barrier Synchronization. The communication mechanisms such as mailboxes
and DMA transfers are available to implement the synchronization among SPE
threads [2]. Supporting more-complex synchronization mechanisms is a set of
DMA atomic functions [3]. The latency of the DMA transfer is approximately
100-200 SPU cycles [3] and this high latency becomes an issue of barrier syn-
chronization among SPE threads.

PPE Serviced SPE Library Function. Since the SPE is designed only for
computation-intensive workloads, it should delegate I/O or main memory allo-
cation to the PPE. This feature is provided as PPE-serviced function [4] that
allows SPE program to seamlessly use PPE-side services. For example, if pro-
gram code in a SPE invokes file I/O API, it is redirected to PPE and the result
is returned to the SPE code. Although it is easy to use, it is not free of overheads
such as DMA and activation (and context switch) of PPE threads to get the ser-
vice done. According to our benchmark evaluation, the latency of PPE-serviced
malloc function takes more than 100 times of that of DMA operation.

1.2 Problem Description

For each work-sharing construct, a control block is necessary to maintain related
data structure of runtime library and to be shared among team threads. With
NOWAIT clause, the implied barrier of work-sharing construct is disabled and
multiple work-sharing constructs can be alive simultaneously [5]. The simplest
solution for handling control blocks for these is to create each instance for each
work-sharing construct when necessary. But frequent allocation and dealloca-
tion of memory can be detrimental to the runtime performance. Furthermore,
it is impossible to pre-allocate the instances because the exact number of work-
sharing constructs that may be alive simultaneously in a parallel region is only
known at runtime. To reduce the overhead of this dynamic memory allocation,
[6] proposed a method to allocate a chunk of work-sharing control blocks at once
and keep in a queue. This scheme can reduce the overhead in frequent memory
allocation but the reuse of the control blocks is available only after the barrier
is encountered. When the queue becomes full, barrier synchronization should
be inserted intentionally to prevent the overhead in resizing the pool. In the
CBE with team threads running on SPEs, every work-sharing control block is
created and stored in the main memory. For this to happen, a SPE thread uses
PPE-serviced malloc which has quite heavy performance overheads as described
in previous section. Although this dynamic memory allocation problem can be
solved by pre-allocating a very large size array of work-sharing control block on
the main memory, this is space-inefficient and overheads of memory allocation
and initialization that are to be paid on every parallel region.

2 Proposed Work-Sharing Implementation in the CBE

The key idea of proposed scheme is to maximize the reuse of work-sharing con-
trol blocks by checking its reusability. A container, which is the unit of reuse

Implementation of OpenMP Work-Sharing on the CBE Architecture 155

Fig. 1. Work-sharing containers in circular list

in our scheme, consists of a chunk-sized array of work-sharing control blocks,
a reusability counter, and a pointer to the next container instance. In our im-
plementation for the CBE, master thread on PPE creates the first container in
the beginning of parallel region and team threads on each SPE execute work-
sharing constructs referring the work-sharing control blocks in this container.
After a team thread finishes referring all the work-sharing control blocks in a
container, it increases the reusability counter by one and try to refer the next
work-sharing control block in the next container. If it is the first thread to refer
the next container, then checks the reusability counter of the next container. If
the value is equal to the number of team threads, it resets counter value to zero
and reuses the next container. Otherwise, it creates new container to insert in a
circular list of containers and sets this as the next container. Therefore, by us-
ing this scheme, no barrier synchronization is needed to reuse the work-sharing
control blocks and the overhead of memory allocation is reduced efficiently.

3 Experiments

We chose the dynamic scheduling testcase from the EPCC benchmarks suite [7]
and the performance is evaluated on Sony Playstation3. We ran the testcase with
4 SPE threads as team threads and set the array size of work-sharing control

Fig. 2. Overhead (usec) of dynamic scheduling test of EPCC with 4 SPE threads

156 J.S. Park, J.-G. Park, and H.-J. Song

blocks in a container to four. To understand the overhead of barrier synchroniza-
tion as a performance factor in CBE, the first step of our analysis is measuring
the original benchmark test which has an implicit barrier at the end of the work-
sharing construct. Secondly, we measured two work-sharing construct manage-
ment schemes: proposed circular list scheme and dynamic work-sharing control
block creation scheme. Since there is no testcase for multiple alive work-sharing
construct case in EPCC benchmarks, we prepared modified dynamic scheduling
testcase by adding NOWAIT clause in the code to eliminate the implied barrier
synchronization. Figure 2 shows the measured overhead against chunk size for the
dynamic scheduling test and modified test. From the observation of results, our
proposed scheme provides better performance than dynamic creation scheme at
each chunk size since the overhead of PPE-serviced malloc function is reduced
dramatically. And also, we can see the overheads from the dynamic creation
scheme are nearly equal to those of the implied barrier synchronization for all
work-sharing constructs. NOWAIT clause to avoid the barrier synchronization
overhead is not effective for the dynamic creation scheme.

4 Conclusion

In this paper, our approach to reduce the runtime overhead gives better perfor-
mance by aggressively reusing the work-sharing control blocks. This is effective
especially when the application executes work-sharing constructs without im-
plicit or explicit barrier synchronization on the CBE.

References

1. Pham, D., et al.: The design and implementation of a first-generation CELL pro-
cessor. In: IEEE International Solid-State Circuites Conference (2005)

2. Zhao, Y., Kennedy, K.: Dependence-based Code Generation for a CELL Processor.
In: International Workshop on Languages and Compilers for Parallel Computing
(2006)

3. Kiestler, M., Perrone, M., Petrini, F.: The design and implementation of a first-
generation CELL processor. In: IEEE International Solid-State Circuites Confer-
ence, pp. 26–28 (2005)

4. IBM Systems and Technology Group: SPE Runtime Management Library Version
2.0, pp. 59–62 (2006)

5. OpenMP Architecture Review Board: OpenMP Application Program Interface Ver-
sion 2.5, pp. 32–46 (2005)

6. Zhang, G., Silvera, R., Archambault, R.: Structure and algorithm for implementing
OpenMP workshares. In: The Workshop on OpenMP Applications and Tools, pp.
110–120 (2004)

7. Bull, J.M.: Measuring synchronization and scheduling overheads in OpenMP. In:
First European Workshop on OpenMP (1999)

Toward an Automatic Code Layout Methodology

Joseph B. Manzano1, Ziang Hu1, Yi Jiang1, Ge Gan1,
Hyo-Jung Song2, and Jung-Gyu Park2

1 Department of Electrical and Computer Engineering, University of Delaware,
Newark, Delaware 19716, USA

2 Software Laboratories, Corporate Technology Operations, Samsung Electronics
{jmanzano,hu,jyi,gan}@capsl.udel.edu,

{hjsong,junggyu.park}@samsung.com

Abstract. This paper presents a study on an automatic code layout
methodology for multi core architectures with explicit memory hierar-
chies. Code layout techniques are employed to run large programs on
such systems. This study shows the effects of different buffer schemes
and replacement policies on a set of benchmarks. These schemes are
considered to be more flexible than current approaches. Moreover, these
schemes can be used as a foundation to build frameworks for high level
parallel programming models in such multi core architectures. The cur-
rent work has been implemented in IBM’s Cell Broadband Engine, but
it can be extended to similar architectures.

1 Introduction

This paper presents a software-based code overlay framework that can be used
to implement high level parallel programming models. Such approach an is more
flexible than current approaches - since parameters, like replacement policies
and buffer behaviors, can be easily changed. The current study is implemented
on IBM’s CBE architecture [1]. Even though this problem is not new (many
studies have been conducted in this area before the advent of virtual memory
and in early Operating Systems1), the resurface of heterogeneous architectures
has given a new life to this problem.

The main objective of this paper is to study the following problem: given a
fixed size of local memory, decide a code buffering behavior and replacement
policy, such that the overall execution time for a given application is minimized.
The paper is divided as follows. Section 2 talks about the general methodology
and framework of the software based code layout approach. Section 3 provides
the experimental test bed and the results obtained from this test bed. Finally,
section 4 provides conclusions and future work.

2 Framework and Methodology

A partition is a set of function calls that will be loaded as a single entity during
execution. Partitions can be created by the user (using special pragma directives)
1 Like the infamous OVL files in Microsoft Disk Operating System.

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 157–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 J.B. Manzano et al.

or automatically by the compiler. A pointer to each partition and its size are
saved in a list, called the partition list. The index in this list is used to load and
to identify partitions for several purposes. This index is assigned to the partition
during link time and embedded in any call which target is inside a partition. The
static libraries (such as libc) and the program entry point always reside in local
memory. For this reason, they are referred as un-partitioned code.

Under the code layout framework, a function can be called in two ways. If the
function resides in local memory then the function call proceeds as usual. If the
function is in a partition then the partition manager is called with certain extra
information about the partition being called. The partition manager is a small
ghost function, whose purpose is to load a code partition when needed and to
create or to restore the state that is needed by such a partition. To maintain
the state of old partitions in function call chains, a special structure needs to
be maintained. This structure is called the partition stack and it is analogous
to a normal function stack. It keeps the caller partition id, return address and
other useful information for each partition that has been called. The stack will
be operated on at the beginning and at the end of every partition manager call.

When a partition is loaded to local memory, the place in which it resides is
called the partition buffer. This buffer can be assigned many different partitions
during runtime. Furthermore, it can be subdivided into segments by the pro-
gramming environment. The buffer exhibits several behaviors and replacement
policies. The behavior presented in this paper is cache like and it exhibits two
replacement policies. One of them is called the modulus replacement policy. In
this approach, a partition is replaced in a modulus fashion. Its main disadvan-
tage is that some important partitions might be evicted unnecessarily. The other
policy is called Least Recently Used (LRU) and it shares similar aspects with its
cache related cousin. In this case, each buffer will be assigned a number (time
to live) which is decremented every time that a partition is replaced in another
buffer. The buffers with the minimum time to live are targeted to be replaced
in the next load.

In this study, the buffer had three implementations that exhibit the former be-
haviors and replacement policies. The first one is called the single buffer scheme.
It was designed as a proof of concept for code overlay. Its buffer behavior and
replacement policy are trivial (i.e. always replace). The second implementation is
the double buffer scheme. In this scheme, the buffer is divided into two. The re-
placement scheme in this approach is modulus. Finally, in the N-buffer scheme,
the buffer can be subdivided into n equal sized sub-buffers. The replacement
policies in this scheme are modulus and LRU. Results for each implementation
can be seen in the next section.

3 Experimental Test Bed

In this study, a Playstation2 3 with Yellow Dog Linux installed was used. The
group of programs that were used as a test bed is given in table 1. The metrics
2 Playstation is a trademark of Sony Inc.

Toward an Automatic Code Layout Methodology 159

Table 1. Applications Test Bed

Application Description

DSP A set of DSP kernels.

GZIP De/Compression utility.

Jacobi An application of Jacobi method.

Laplace An application of the Laplace transform.

MD A simple molecular dynamic application.

MGRID A Multi-Grid solver.

used in these experiments are the number of DMA transfers and the execution
time for each program. Figure 1 depicts the number of DMA required for selected
applications when using 1 through 4 sub-buffers. Figure 2 shows the runtime of
the selected applications when running on single and double buffer schemes.
Finally, figures 3 and 4 show the number of DMA transfers and execution times
of the LRU and the modulus policies with four buffers.

Fig. 1. DMA Transfers: 1, 2, 3 & 4 buffs Fig. 2. Execution time: single & double

Figure 1 shows that extra buffers do not necessarily represent an increase in
performance (or a reduction in DMA transfers). More buffers are useful when
more partitions are available and when they are called often. The biggest advan-
tage seen in figure 1 is the synthetic case 7. The sharp decrease in DMA transfers
is expected since the test case was designed to test function calls between par-
titions in loops. The GZIP application shows a dramatic decrease between one
and two buffers, but only minor decreases (18 DMA transfer from 2 to 3 buffers
and 3 DMA transfers from 3 to 4 on average) when the number of buffers are
increased. The MGRID application shows a linear decrease that implies that
more buffers can improve its performance even further. These results support
the idea that the number of sub-buffers is highly dependent on the application’s
structure.

Figures 2 and 4 show the execution time of six applications from which two
show great variations. These graphs show a strong correlation between DMA
and execution time and how extra DMA transfers can affect the performance
of a given application, anything from 11 to 30 percent compared with a lower

160 J.B. Manzano et al.

Fig. 3. LRU & MOD policies: DMA Fig. 4. LRU & MOD policies: Time

performance schemes. Figures 3 and 4 show that the LRU policy can be advan-
tageous in applications with high number of partitions, like MGRID. However,
it does show some performance degradation for applications when the number
of partitions is low. The greatest of these performance degradations is 8 % for
the JACOBI application, which has only one partition in the whole program.

4 Conclusions and Future Work

This paper presents an empirical analysis for a group of buffer behaviors and
replacement policies for software code layout. IBM has also been aware of the
code layout problem and it provided some method for code layout in their CELL
architecture [3]. However, this method is too strict since it depends on GCC’s
overlays [2]. However, the test-bed presented here is indeed small and part of
the future work is to extend it to include more test cases. Work on a Pre-
fetching scheme is also planned. This scheme depends on a special structure
called the Partition Graph, which illustrates the relationships between partitions.
Giving this graph, many parameters, like partition dependencies, usage and an
optimal number of sub-buffers, can be calculated and used to pre-fetch partitions.
Finally, improvements, such as dynamically switching between modulus and LRU
policies, are planned.

Acknowledgments

I would like to thank ET International for their support of this project. I would
also like to thank my adviser, Guang R. Gao, for all his advice and guidance
and my co worker Ioannis E. Venetis for his help in reviewing this paper.

References

1. IBM Research Overview of the Cell Broadband Engine Processor. Cell Broadband
Engine Programming Handbook. Version 1.0, pp. 34–44 (2006)

2. Chamberlain, S., Taylor, I.L.: Linker Scripts: Overlays. Using LD, The GNU linker.
pp. 41–42

3. IBM Research Compiler and Runtime Support for Code Partitioning. Cell Broad-
band Engine Programming Handbook. Version 1.0, pp. 616–617 (2006)

An Efficient OpenMP Runtime System
for Hierarchical Architectures

Samuel Thibault, François Broquedis, Brice Goglin,
Raymond Namyst, and Pierre-André Wacrenier

INRIA Futurs - LaBRI
351 cours de la libération

33405 Talence cedex, France
{thibault,goglin,namyst,wacrenier}@labri.fr,

francois.broquedis@etu.u-bordeaux1.fr

Abstract. Exploiting the full computational power of always deeper
hierarchical multiprocessor machines requires a very careful distribu-
tion of threads and data among the underlying non-uniform architec-
ture. The emergence of multi-core chips and NUMA machines makes it
important to minimize the number of remote memory accesses, to fa-
vor cache affinities, and to guarantee fast completion of synchronization
steps. By using the BubbleSched platform as a threading backend for
the GOMP OpenMP compiler, we are able to easily transpose affini-
ties of thread teams into scheduling hints using abstractions called bub-
bles. We then propose a scheduling strategy suited to nested OpenMP
parallelism. The resulting preliminary performance evaluations show an
important improvement of the speedup on a typical NAS OpenMP
benchmark application.

Keywords: OpenMP, Nested Parallelism, Hierarchical Thread Schedul-
ing, Bubbles, Multi-Core, NUMA, SMP.

1 Introduction

The emergence of deeply hierarchical architectures based on multi-threaded
multi-core chips and NUMA machines raises the need for a careful distribution of
threads and data. Indeed, cache misses and NUMA penalties become more and
more important with the complexity of the machine, making these constraints as
important as parallelization. They require some new programming models and
new tools to make the most out of these underlying architectures.

As quoted by Gao et al. [GSS+06], it is important to expose domain-specific
knowledge semantics to the various software components in order to organize
computation according to the application and architecture. Indeed, the whole
software stack, from the application to the scheduler, should be involved in the
parallelizing, scheduling and locality adaptation decisions by providing useful
information to the other components.

Therefore, in OpenMP frameworks, the information extracted by the com-
piler (about memory affinity and adherence to the same parallel section) can be

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 161–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 S. Thibault et al.

very useful for the guidance of task/thread scheduling. On the other hand, it is
very important to rely on architecture specific constraints when making these
scheduling decisions. A tight interaction between the OpenMP stack and the
underlying hardware-aware scheduler is thus required.

The most delicate point, when dealing with irregular applications, is to exploit
this knowledge at runtime (during the whole execution time) so as to maintain a
good balancing of threads when events arise (task termination, creation of new
embedded parallel sections, blocking synchronization, etc.).

In this paper, we propose a hierarchical threading library able to follow/obey
scheduling directives and advices in a very powerful manner. Scheduling informa-
tion (affinity, group membership) is attached to bubbles, which are abstractions
that can recursively group threads or bubbles sharing common properties.

We report on preliminary experiences on top of a 8-way multi-core NUMA
machine and we show that running OpenMP applications on top of our run-
time system greatly enhances performance on hierarchical architectures under
irregular conditions. We also propose insights regarding the extraction of useful
information by the compiler for our runtime and discuss the addition of a couple
of non-standard OpenMP directives that would improve performance.

2 Scheduling Applications Featuring Nested, Irregular
Parallelism

Achieving the best possible performance when programming OpenMP applica-
tions requires developers to expose the parallelism and to explicitly design their
code to drive its parallel behavior. Therefore, it is quite common nowadays to
define per-thread specific data structures (in order to avoid false-sharing) and
use a static, possibly pre-calculated, distribution of the workload to get good
data locality [MM06]. Indeed, this model suits very well regular applications
with coarse-grain parallelism.

However, this approach is hardly usable when dealing with irregular applica-
tions that rather need a dynamic load balancing mechanism. The use of complex
synchronization schemes, or even blocking systems calls, may also be responsible
for introducing irregularities regarding the computing load on the available pro-
cessors. Using OpenMP dynamic scheduling directives can sometimes improve
performance. In some cases, however, it may penalize data locality or even intro-
duce false sharing effects, which can severely impact performance on hierarchical
architectures.

Another approach is to increase the number of potential parallel tasks using
nested parallelism, so that threads can be dynamically (re)allocated according to
the workload disparity. The performance of such a dynamic thread management,
when supported1, heavily relies on the underlying runtime implementation, but
also on the underlying operating system’s scheduler. This explains why OpenMP
users have been experiencing poor performance with the nested capabilities of

1 Nested parallelism is currently an optional feature in OpenMP.

An Efficient OpenMP Runtime System for Hierarchical Architectures 163

some OpenMP compilers, and have ended up performing explicit thread pro-
gramming on top of OpenMP [BS05, GOM+00] or explicitely binding thread
groups to processors [Zha06].

Nevertheless, there exists some very good implementations of OpenMP nested
parallelism, such as Omni/ST [TTSY00] for instance. Such implementations are
typically based on a fine-grain thread management system that uses a fixed
number of threads to execute an arbitrary number of filaments, as done in the
Cilk multithreaded system [FLR98]. The performance obtained over symmetrical
multiprocessors is often very good, mostly because many tasks can be executed
sequentially with almost no overhead when all processors are busy. However,
since these systems provide no support for attaching high level information such
as memory affinity to the generated tasks, many applications will actually achieve
poor performance on hierarchical, NUMA multiprocessors.

One could probably enhance these OpenMP implementations to use affinity
information extracted by the compiler so as to better distribute tasks or threads
over the underlying processors. However, since only the underlying thread sched-
uler has complete control over scheduling events such as processor idleness, block-
ing syscall or even thread preemption, this information could only be used to
influence task allocation at the beginning of each parallel section.

We believe that a better solution would be to transmit information extracted
by the compiler to the underlying thread scheduler in a persistent manner, and
that only a tight integration of application-provided meta-data and architecture
description can let the underlying scheduler take appropriate decisions during
the whole application run time. In other words, one can see this configurable
scheduler framework as a domain-specific language enabling scientists to transfer
their knowledge to the runtime system [GSS+06].

3 MaGOMP: An Implementation of GNU OpenMP for
Hierarchical Machines

To evaluate the potential gain of providing a thread schedulerwith persistent infor-
mation extracted by an OpenMP compiler, we have extended the GNU OpenMP
runtime system (i.e. the libgomp library) so as to rely on the Marcel thread li-
brary. This library provides facilities for attaching various information to groups
of threads, together with a framework that helps to develop schedulers capable of
using these metadata. Scheduling policies are simply developed as plug-ins.

Before describing our extensions to the GNU OpenMP compiler suite, we first
present the most important features of the Marcel library.

3.1 The Bubble Scheduling Model

Marcel is a POSIX-compliant thread library featuring extensions for easily writ-
ing efficient, customized schedulers for hierarchical architectures. The API of
Marcel provides functions to group threads using nested sets called bubbles
[Thi05]. These abstractions allow programmers to model the relationships be-
tween the different threads of an application. Figure 1 illustrates this concept:

164 S. Thibault et al.

Fig. 1. Expressing thread relationships: graphical and tree-based representations

Machine
runqueue

runqueues
Chip

runqueues
Core

Fig. 2. Scheduling of bubbles and threads on the runqueues of a hierarchical machine

four threads are grouped as pairs in bubbles (assuming they work on the same
data), which are themselves grouped along another thread in a larger bubble
(assuming they share information less often). Bubbles allow expression of rela-
tionships like data sharing, collective operations, or more generally a particular
scheduling policy need (serialization, gang scheduling, etc.). Hierarchical ma-
chines are modelled with a hierarchy of runqueues. Each component of each
hierarchical level of the machine is represented by one runqueue: one per logical
processor, one per core, one per chip, one per NUMA node, and one for the whole
machine. Marcel ’s ground scheduler then uses a hierarchical Self-Scheduling algo-
rithm. Whenever idle, a processor scans all runqueues that span it, and executes
the first thread that is found, from bottom to top. For instance, if the thread
is on a runqueue that represents a chip, it may be run by any processor of this
chip (see Figure 2).

As mentioned previously, Marcel provides a high-level API for writing pow-
erful and portable schedulers that manipulate threads, bubbles and runqueues.
Threads and bubbles are equally considered as entities, while bubbles and run-
queues are equally considered as scheduling holders, so that we end up with
entities (threads or bubbles) that we can schedule on holders (bubbles or run-
queues). Primitives are then provided for manipulating entities in holders. Run-
queues can be accessed through vectors, and can be walked through thanks to
“parent” and “child” pointers. Some functions permit to gather statistics about
bubbles so as to take appropriate decisions. This includes for instance the to-
tal number of threads and the number of running threads, but also various
information such as the accumulated expected and current CPU computation
time or memory usage, or the cache miss rates.

An Efficient OpenMP Runtime System for Hierarchical Architectures 165

Writing a high-level scheduler actually reduces to writing some hook functions.
The main one is actually called when the ground Self-Scheduler encounters a bub-
ble during its search for the next thread to execute. The default implementation
just looks for a thread in the bubble (or one of its sub-bubbles) and switches to
it. The bubble_tick() hook is called when some time-slice for a bubble expires,
and hence permits periodic operations on bubbles with a per-bubble notion of
time. Of course, mere “daemon” threads can also be started for performing back-
ground operations. As a result, scheduling experts may manipulate threads with
a high level of abstraction by deciding the placement of bubbles on runqueues, or
even temporarily putting some bubbles aside (by defining their own runqueues
that the basic Self-Scheduler will not look at).

3.2 Generating Bubbles Out of OpenMP Parallel Sections

The GNU OpenMP compiler[gom], GOMP, is based on an extension of the
GCC 4.2 compiler that converts OpenMP pragmas into threading calls. The
creation of threads and teams is actually delegated to a shared library, libgomp,
which contains an abstraction layer to map OpenMP threads onto various thread
implementations. This way, any application previously compiled by GOMP may
be relinked against an implementation of libgomp on another thread type and
transparently work the same.

We used this flexible design to develop MaGOMP, a port of GOMP on top of
the Marcel threading library in which BubbleSched is implemented. To do so, a
Marcel adaptation of libgomp threads has been added to the existing abstrac-
tion layer. We rely on Marcel ’s fully POSIX compatible interface to guarantee
that MaGOMP will behave as well as GOMP on pthreads. Then, it becomes pos-
sible to run any existing OpenMP application on top of BubbleSched by simply
relinking it.

Once Marcel threads are created they basically behave by default as native
pthreads without any notion of team or memory affinity. BubbleSched hooks have
been added in the libgomp code to provide information about thread teams by
creating bubbles accordingly.

Therefore, when a thread encounters a nested parallel region and becomes the
master of a new team, it creates a bubble within its currently holding bubble.
Then, it moves itself into this new bubble and creates the team’s slave threads
inside it. Finally, the master dispatches the workload across the team. Once their
work is completed, slave threads die while the master destroys the bubble and
returns to its original team. As shown on Figure 3, only a few lines of code are
needed to associate a nested team hierarchy with a bubble hierarchy.

3.3 A Scheduling Strategy Suited to OpenMP Nested Parallelism

The challenge of a scheduler for the nested parallelism of OpenMP resides in
how to distribute the threads over the machine. This must be done in a way
that favors both a good balancing of the computation and, in the case of multi-
core and NUMA machines, a good affinity of threads, for better cache effects
and avoiding the remote memory access penalty.

166 S. Thibault et al.

void gomp_team_start (void (*fn) (void *), void *data, unsigned nthreads,
struct gomp_work_share *work_share) {

struct gomp_team *team;
team = new_team (nthreads, work_share);
... /* Pack ’fn’ and ’data’ into the ’start_data’ structure */

if (nthreads > 1 && team->prev_ts.team != NULL) {
/* nested parallelism, insert a marcel bubble */
marcel_bubble_t *holder = marcel_bubble_holding_task (thr->tid);
marcel_bubble_init (&team->bubble);
marcel_bubble_insertbubble (holder, &team->bubble);
marcel_bubble_inserttask (&team->bubble, thr->tid);
marcel_attr_setinitbubble (&gomp_thread_attr, &team->bubble);

}

for(int i=1; i < nbthreads; i++) {
pthread_create (NULL, &gomp_thread_attr,

gomp_thread_start, start_data);
...

}
}

Fig. 3. One-to-One correspondence between Marcel ’s bubble and GOMP’s team
hierarchies

For achieving this, we wrote a bubble spread scheduler consisting of a mere
recursive function that uses the API described in section 3.1 to greedily dis-
tribute the hierarchy of bubbles and threads over the hierarchy of runqueues.
This function takes in an array of “current entities” and an array of “current run-
queues”. It first sorts the list of current entities according to their computation
load (either explicitly specified by the programmer, or inferred from the num-
ber of threads). It then greedily distributes them onto the current runqueues by
keeping assigning the biggest entity to the least loaded runqueue2, and recurse
separately into the sub-runqueues of each current runqueue.

It often happens that an entity is much more loaded than others (because it is a
very deep hierarchical bubble for instance). In such a case, a recursive call is made
with this bubble “exploded”: the bubble is removed from the “current entities”
and replaced by its content (bubbles and threads). How big a bubble needs to
be for being exploded is a parameter that has to be tuned. This may depend on
the application itself, since it permits to choose between respecting affinities (by
pulling intact bubbles as low as possible) and balancing the computation load
(by exploding bubbles for having small entities for better distribution).

This way, affinities between threads are taken into account: since they are by
construction in the same bubble hierarchy, the threads of the same external loop

2 This algorithm comes from the greedy algorithm typically used for resolving the
bi-partition problem.

An Efficient OpenMP Runtime System for Hierarchical Architectures 167

iterations are spread together on the same NUMA node or the same multicore
chip for instance, thus reducing the NUMA penalty and enhancing cache effects.

Other repartition algorithms are of course possible, we are currently working
on a even more affinity-based algorithm that avoids bubble explosions as much
as possible.

4 Performance Evaluation

We validated our approach by experimenting with the BT-MZ application. It is
one of the 3D Fluid-Dynamics simulation applications of the Multi-Zone version
of the NAS Parallel Benchmark [dWJ03] 3.2. In this version, the mesh is split
in the x and y directions into zones. Parallelization is then performed twice:
simulation can be performed rather independently on the different zones with
periodic face data exchange (coarse grain outer parallelization), and simulation
itself can be parallelized among the z axis (fine grain inner parallelization).
As opposed to other Multi-Zone NAS Parallel Benchmarks, the BT-MZ case is
interesting because zones have very irregular sizes: the size of the biggest zone
can be as big as 25 times the size of the smallest one. In the original SMP source
code, outer parallelization is achieved by using Unix processes while the inner
parallelization is achieved through an OpenMP static parallel section. Similarly
to Ayguade et al. [AGMJ04], we modified this to use two nested OpenMP static
parallel sections instead, using no ∗ ni threads.

The target machine holds 8 dual-core AMD Opteron 1.8GHz NUMA chips
(hence a total of 16 cores) and 64GB of memory. The measured NUMA factor
between chips3 varies from 1.06 (for neighbor chips) to 1.4 (for most distant
chips). We used the class A problem, composed of 16 zones. We tested both
the Native POSIX Thread Library of Linux 2.6 (NPTL) and the Marcel library,
before trying the Marcel library with our bubble spread scheduler.

We first tried non-nested approaches by only enabling either outer parallelism
or inner parallelism, as shown in Figure 4:

Outer parallelism(no ∗ 1): Zones themselves are distributed among the pro-
cessors. Due to the irregular sizes of zones and the fact that there is only a
few of them, the computation is not well balanced, and hence the achieved
speedup is limited by the biggest zones.

Inner parallelism(1 ∗ ni): Simulation in zones are performed sequentially, but
simulations themselves are parallelized among the z axis. The computation
balance is excellent, but the nature of the simulation introduces a lot of
inter-processor data exchange. Particularly because of the NUMA nature of
the machine, the speedup is hence limited to 7.

So as to get the benefits of both approaches (locality and balance), we then
tried the nested approach by enabling both parallelisms. As discussed by

3 The NUMA factor is the ratio between remote memory access and local memory
access times.

168 S. Thibault et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

S
pe

ed
up

Number of Threads

NPTL inner
Marcel inner
NPTL outer

Marcel outer

Fig. 4. Outer parallelism (no ∗ 1) and inner parallelism (1 ∗ ni)

Duran et al. [DGC05], the achieved speedup depends on the relative num-
ber of threads created by the inner and the outer parallelisms, so we tried up
to 16 threads for the outer parallelism (i.e. the maximum since there are 16
zones), and up to 8 threads for the inner parallelism. The results are shown on
Figure 5. The nested speedup achieved by NPTL is very limited (up to 6.28),
and is actually worse than what pure inner parallelism can achieve (almost 7,
not represented here because the "Inner" axis maximum was truncated to 8
for better readability). Marcel behaves better (probably because user threads
are more lightweight), but it still can not achieve a better speedup than 8.16.
This is due to the fact that neither NPTL nor Marcel takes affinities of threads
into account, leading to very frequent remote memory accesses, cache invalida-
tion, etc. We hence used our bubble strategy to distribute the bubble hierarchy
corresponding to the nested OpenMP parallelism over the whole machine, and
could then achieve better results (up to 10.2 speedup with 16 ∗ 4 threads). This
improvement is due to the fact that the bubble strategy carefully distribute
the computation over the machine (on runqueues) in an affinity-aware way (the
bubble hierarchy).

It must be noted that for achieving the latter result, the only addition we had
to do to the BT-MZ source code is the following line:

call marcel_set_load(int(proc_zone_size(myid+1)))

that explicitly tells the bubble spread scheduler the load of each zone, so that
they can be properly distributed over the machine. Such a clue (which could
even be dynamic) is very precious for permitting the runtime environment to
make appropriate decisions, and should probably be added as an extension to

An Efficient OpenMP Runtime System for Hierarchical Architectures 169

 1 2 3 4 5 6 7 8 9 3
 4

 5
 6

 7
 8 2

 4
 6
 8

 10

6.28

 5.63

Outer

Inner

(a) NPTL

 1 2 3 4 5 6 7 8 9 3
 4

 5
 6

 7
 8 2

 4
 6
 8

 10 8.16

Outer

Inner

(b) Marcel

 1 2 3 4 5 6 7 8 9 3
 4

 5
 6

 7
 8 2

 4
 6
 8

 10
 10.2

Outer

Inner

(c) Bubbles

Fig. 5. Nested parallelism

170 S. Thibault et al.

the OpenMP standard. Another way to achieve load balancing would be to create
more or less threads according to the zone size [AGMJ04]. This is however a bit
more difficult to implement than the mere function call above.

5 Conclusion

In this paper, we discussed the importance of establishing a persistent coop-
eration between an OpenMP compiler and the underlying runtime system for
achieving high performance on nowadays multi-core NUMA machines. We
showed how we extended the GNU OpenMP implementation, GOMP, for mak-
ing use of the flexible Marcel thread library and its high-level bubble abstraction.
This permitted us to implement a scheduling strategy that is suited to OpenMP
nested parallelism. The preliminary results show that it improves the achieved
speedup a lot.

At this point, we are enhancing our implementation so as to introduce just-
in-time allocation for Marcel threads, bringing in the notion of “ghost” threads,
that would only be allocated when first run by a processor. In the short term,
we will keep validating the obtained results over several other OpenMP applica-
tions, such as Ondes3D (French Atomic Energy Commission). We will compare
the resulting performance with other OpenMP compilers and runtimes. We also
intend to develop an extension to the OpenMP standard that will provide pro-
grammers with the ability to specify load information in their applications, which
the runtime will be able to use to efficiently distribute threads.

In the longer run, we plan to extract the properties of memory affinity at the
compiler level, and express them by injecting gathered information into more
accurate attributes within the bubble abstraction. These properties may be ob-
tained either thanks to new directives à la UPC4 [CDC+99] or be computed
automatically via static analysis [SGDA05]. For instance, this kind of infor-
mation is helpful for a bubble-spreading scheduler, as we want to determine
which bubbles to explode or to decide whether or not it is interesting to apply a
migrate-on-next-touch mecanism [NLRH06] upon a scheduler decision. All these
extensions will rely on a memory management library that attaches information
to bubbles according to memory affinity, so that, when migrating bubbles, the
runtime system can migrate not only threads but also the corresponding data.

6 Software Availability

Marcel and BubbleSched are available for download within the PM2 distri-
bution at http://runtime.futurs.inria.fr/Runtime/logiciels.htmlunder
the GPL license. The MaGOMP port of libgomp will be available soon and may
be obtained on demand in the meantime.

4 The UPC forall statement adds to the traditional for statement a fourth field that
describes the affinity under which to execute the loop.

http://runtime.futurs.inria.fr/Runtime/logiciels.html

An Efficient OpenMP Runtime System for Hierarchical Architectures 171

References

[AGMJ04] Ayguade, E., Gonzalez, M., Martorell, X., Jost, G.: Employing Nested
OpenMP for the Parallelization of Multi-Zone Computational Fluid Dy-
namics Applications. In: 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (2004)

[BS05] Blikberg, R., Sørevik, T.: Load balancing and OpenMP implementation of
nested parallelism. Parallel Computing 31(10-12), 984–998 (2005)

[CDC+99] Carlson, W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren,
K.: Introduction to UPC and Language Specification. Technical Report
CCS-TR-99-157, George Mason University (May 1999)

[DGC05] Duran, A., Gonzàles, M., Corbalán, J.: Automatic Thread Distribution
for Nested Parallelism in OpenMP. In: 19th ACM International Confer-
ence on Supercomputing, Cambridge, MA, USA, June 2005, pp. 121–130
(2005)

[dWJ03] Van der Wijngaart, R.F., Jin, H.: NAS Parallel Benchmarks, Multi-Zone
Versions. Technical Report NAS-03-010, NASA Advanced Supercomputing
(NAS) Division (2003)

[FLR98] Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5
Multithreaded Language. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Montreal, Canada (June
1998), http://theory.lcs.mit.edu/pub/cilk/cilk5.ps.gz

[gom] GOMP – An OpenMP implementation for GCC,
http://gcc.gnu.org/projects/gomp/

[GOM+00] Gonzalez, M., Oliver, J., Martorell, X., Ayguade, E., Labarta, J., Navarro,
N.: OpenMP Extensions for Thread Groups and Their Run-Time Support.
In: Languages and Compilers for Parallel Computing. Springer, Heidelberg
(2000)

[GSS+06] Gao, G.R., Sterling, T., Stevens, R., Hereld, M., Zhu, W.: Hierarchical
multithreading: programming model and system software. In: 20th Inter-
national Parallel and Distributed Processing Symposium (IPDPS) (April
2006)

[MM06] Marathe, J., Mueller, F.: Hardware Profile-guided Automatic Page Place-
ment for ccNUMA Systems. In: Sixth Symposium on Principles and Prac-
tice of Parallel Programming (March 2006)

[NLRH06] Nordén, M., Löf, H., Rantakokko, J., Holmgren, S.: Geographical Locality
and Dynamic Data Migration for OpenMP Implementations of Adaptive
PDE Solvers. In: Second International Workshop on OpenMP (IWOMP
2006), Reims, France (2006)

[SGDA05] Shen, X., Gao, Y., Ding, C., Archambault, R.: Lightweight Reference Affin-
ity Analysis. In: 19th ACM International Conference on Supercomputing,
Cambridge, MA, USA, June 2005, pp. 131–140 (2005)

[Thi05] Thibault, S.: A Flexible Thread Scheduler for Hierarchical Multiproces-
sor Machines. In: Second International Workshop on Operating Systems,
Programming Environments and Management Tools for High-Performance
Computing on Clusters (COSET-2), Cambridge / USA, 06 2005. ICS /
ACM / IRISA

http://theory.lcs.mit.edu/pub/cilk/cilk5.ps.gz
http://gcc.gnu.org/projects/gomp/

172 S. Thibault et al.

[TTSY00] Tanaka, Y., Taura, K., Sato, M., Yonezawa, A.: Performance Evaluation of
OpenMP Applications with Nested Parallelism. In: Languages, Compilers,
and Run-Time Systems for Scalable Computers, pp. 100–112 (2000)

[Zha06] Zhang, G.: Extending the OpenMP standard for thread mapping and
grouping. In: Second International Workshop on OpenMP (IWOMP 2006),
Reims, France (2006)

Problems, Workarounds and Possible Solutions

Implementing the Singleton Pattern with C++
and OpenMP

Michael Suess and Claudia Leopold

University of Kassel, Research Group Programming Languages / Methodologies,
Wilhelmshöher Allee 73, D-34121 Kassel, Germany

{msuess,leopold}@uni-kassel.de

Abstract. Programs written in C++ and OpenMP are still relatively
rare. This paper shows some problems with the current state of the
OpenMP specification regarding C++. We illustrate the problems with
various implementations of the singleton pattern, measure their perfor-
mance and describe workarounds and possible changes to the specifica-
tion. The singletons are available in the AthenaMP open-source project.

1 Introduction

Programming with OpenMP and C++ is still challenging today. With present
compilers, even basic C++ features such as exceptions often do not work. To
provide more test cases and experiment with advanced C++ features in combi-
nation with OpenMP, the AthenaMP [1] open source project was created. This
work is part of AthenaMP.

One of the most widely known patterns among programmers is the singleton.
It has been thoroughly analyzed and implemented. This paper deploys thread-
safe singletons as an example to show how OpenMP and C++ can be used
together. Several implementations are described in depth, which is our first con-
tribution. The second contribution is pointing out problems with the use of
OpenMP in combination with C++. We provide workarounds for these prob-
lems and suggest changes to the OpenMP specification to solve them fully.

The paper is organized as follows: In Section 2, the singleton pattern is intro-
duced, along with a simple, non-threaded implementation in C++. Section 3 de-
scribes various thread-safe implementations, highlights problems with OpenMP
and explains possible workarounds, while their performance is benchmarked in
Section 4. Some implementations require changes to the OpenMP specification,
which are collected in Section 5. The work of this paper is embedded in the
AthenaMP open-source project described in Section 6. The paper finishes with
related work in Section 7, and a summary in Section 8.

2 The Singleton Pattern

The most famous description of the intent of the singleton pattern is from
Gamma et al. [2]:

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 173–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 M. Suess and C. Leopold

Ensure a class only has one instance, and provide a global point of access
to it. (Gamma et al. [2])

Singletons are useful to ensure that only one object of a certain type exists
throughout the program. Possible applications are a printer spooler or the state
of the world in a computer game. While singletons provide a convenient way to
access a resource throughout the program, one needs to keep in mind that they
are not much more than glorified global variables, and just like them need to be
used with care (or not at all, if possible). Yegge explains this in great detail in
one of his weblog posts [3].

While singletons can be implemented in C++ using inheritance, we have
decided to implement them using wrappers and templates, as described by
Schmidt et al. [4]. These authors call their classes adapters, but we stick to
the more general name singleton wrapper instead, to avoid confusion with the
well-known adapter pattern (which is different from what we are doing). We pro-
vide wrapper classes that can be instantiated with any class to get the singleton
functionality. For example, to treat the class my class as a singleton and call
the method my method on it, one needs to do the following:

s ing l e ton wrapper <my class > : : i n s t anc e () . my method () ;

Provided that all accesses to the class my class are carried out in this way,
then and only then the class is a singleton. The code of class my class does not
need to be changed in any way, but all of the singleton functionality is provided
by the wrappers. This is the biggest advantage of this implementation over an
inheritance-based approach. Typical requirements for an implementation state
that the singleton:

– must not require prior initialization, because forgetting to do so is a frequent
mistake by programmers

– must be initialized only when it is needed (lazy initialization)
– must return the same instance of the protected object, regardless of whether

it is called from within or outside a parallel region

A non-threadsafe version of the instance method of a singleton wrapper is
shown in Figure 1. Here, instance is a private static member variable, omitted
for brevity in all of our examples. This implementation, of course, has problems
in a multi-threaded environment, as the instance variable is a shared resource
and needs to be protected from concurrent access. Ways to deal with this problem
are shown in the next section.

3 Thread-Safe Singleton Implementation Variants

A safe and simple version of a multi-threaded singleton wrapper is shown in
Figure 2. It uses a named critical region to protect access to the singleton in-
stance. While this solution solves the general problem of protecting access to

Problems, Workarounds and Possible Solutions 175

template <class Type>
class s i ng l e t on wrappe r {
static Type& in s t anc e ()
{

i f (i n s t anc e == 0) {
i n s t an c e = new Type ;

}
return ∗ i n s t anc e ;

}
} ;

Fig. 1. The instance method of
a sequential singleton wrapper

template <class Type>
class s i ng l e t on wrappe r {
static Type& in s t anc e ()
{

#pragma omp cr i t i c a l (ATHENAMP 1)
{

i f (i n s t an c e == 0) {
i n s t anc e = new Type ;

}
}
return ∗ i n s t anc e ;

}
} ;

Fig. 2. The instance method of a simple,
thread-safe singleton wrapper

the singleton class, it has two major drawbacks, both of which we are going
to solve later: First, it uses the same named critical construct to protect all
classes. If e. g. a singleton for a printer spooler and a singleton for the world
state is needed in the same program, access to these classes goes through the
same critical region and therefore these accesses can not happen concurrently.
This restriction is addressed in Section 3.1. The second problem is that each
access to the singleton has to pay the cost of the critical region, although tech-
nically it is safe to work with the singleton after it has been properly initialized
and published to all threads. An obvious (but incorrect) attempt to solve this
problem is shown in Section 3.2, while Sects. 3.3 and 3.4 solve the problem, but
have other restrictions.

3.1 The Safe Version Using One Lock Per Protected Object

In the last section, we have shown a thread-safe singleton that used one critical
region to protect accesses to all singletons in the program. This introduces un-
necessary serialization, as a different critical region per singleton is sufficient. We
will show four different ways to solve the problem. The first two require changes
in the OpenMP specification to work but are quite simple from a programmer’s
point of view, the third can be done today but requires a lot of code. The fourth
solution requires a helper-class and has problems with some compilers.

Attempt 1: Extending Critical: Our first attempt at solving the problem
is shown in Figure 3. The idea is to give each critical region a unique name by
using the template parameter of the singleton wrapper. Unfortunately, this idea
does not work, because the compilers treat the name of the critical region as a
string and perform no name substitution on it. While it would be theoretically
feasible to change this in compilers, because template instantiation happens at
compile-time, it would still require a change in the OpenMP specification, and
we suspect the demand for that feature to be small. For this reason, we are not
covering this attempt any further in Section 5.

176 M. Suess and C. Leopold

// t h i s code works , but does
// not so l v e the problem !
template <class Type>
class s i ng l e t on wrappe r {
static Type& in s t anc e ()
{

#pragma omp cr i t i ca l (Type)
{

i f (i n s t anc e == 0) {
i n s t an c e = new Type ;

}
}
return ∗ i n s t anc e ;

}
} ;

Fig. 3. instance method with multiple
critical regions - Attempt 1

// t h i s code does not work !
template <class Type>
class s i ng l e t on wrappe r {
static Type& in s t anc e ()
{

static omp lock t my lock
= OMP LOCK INIT ;

omp set lock (&my lock) ;
i f (i n s t anc e == 0) {

i n s t an c e = new Type ;
}
omp unset lock (&my lock) ;
return ∗ i n s t anc e ;

}
} ;

Fig. 4. instance method with multiple
critical regions - Attempt 2

Attempt 2: Static Lock initialized with OMP LOCK INIT: Our second
attempt to solve the problem uses OpenMP locks. The code employs a static
lock to protect access to the shared instance variable. Since each instance of the
template function is technically a different function, each instance gets its own
lock as well, and therefore each singleton is protected by a different critical region.

The big problem with this approach is to find a way to initialize the lock
properly. There is only one way to initialize a lock in OpenMP – by calling
omp init lock. This must only be done once, but OpenMP does not provide
a way to carry out a piece of code only once (a solution to this shortcoming is
presented later in this section). One of our requirements for the singleton is that
it must not need initialization beforehand, therefore we are stuck.

A solution to the problem is shown in Figure 4 and uses static variable initial-
ization to work around the problem, by initializing the lock with the constant
OMP LOCK INIT. This is adapted from POSIX Threads, where a mutex can be ini-
tialized with PTHREAD MUTEX INITIALIZER. In a thread-safe environment (which
OpenMP guarantees for the base language), the runtime system should make
sure this initialization is carried out only once, and all the compilers we have
tested this with actually do so. Of course, OMP LOCK INIT is not in the OpenMP
specification, but we believe it would be a worthy addition to solve this and
similar problems, not only related to singletons. Therefore, although quite an
elegant solution, this attempt does not work with OpenMP today as well.

Attempt 3: Doing It Once: As shown in the previous paragraph, method
omp init lock needs to be called only once, but OpenMP provides no facilities to
achieve that. It is possible to code this functionality in the program itself, though,
as one of the authors has described in his weblog [5]. The necessary methods to
achieve this are available and described in the AthenaMP library [1] as well as
the above-mentioned weblog entry. Here, we restrict ourselves to showing how
the functionality can be used.

Figure 5 depicts the instance method with once functionality. Line 19 has
the actual call to the once template-function defined in AthenaMP. The function

Problems, Workarounds and Possible Solutions 177

1 struct i n i t f u n c {
2 omp lock t ∗ l o ck ;
3 void operator () ()
4 {
5 omp in i t l o ck (l o ck) ;
6 }
7 } ;
8
9 template <class Type>

10 class s i ng l e t on wrappe r {
11 static Type& in s t anc e ()
12 {
13 static omp lock t my lock ;
14 static on c e f l a g f l a g
15 = ATHENAMP ONCE INIT;
16 i n i t f u n c my func ;
17 my func . l o ck = &my lock ;
18
19 once (my func , f l a g) ;
20
21 omp set lock (&my lock) ;
22 i f (i n s t an c e == 0) {
23 i n s t anc e = new Type ;
24 }
25 omp unset lock (&my lock) ;
26 return ∗ i n s t anc e ;
27 }
28 } ;

Fig. 5. instance method with multiple
critical regions - Attempt 3

template <class Type>
class s i ng l e t on wrappe r {
static Type& in s t anc e ()
{

static omp lock ad my lock ;
my lock . s e t () ;
i f (i n s t anc e == 0) {

i n s t anc e = new Type ;
}
my lock . unset () ;
return ∗ i n s t anc e ;

}
} ;

Fig. 6. instance method with multi-
ple critical regions - Attempt 4

takes two parameters, the first one being a functor that includes what needs to
happen only once (also shown at the top of Figure 5). The second parameter
is a flag of the type once flag that is an implementation detail to be handled
by the user.

This attempt to solve our problem works. Nevertheless, it needs a lot of code,
especially if you also count the code in the once method. Moreover, it relies
on static variable initialization being thread-safe, as our last attempt. For these
reasons, we are going to solve the problem one last time.

Attempt 4: Lock Adapters to the Rescue: Figure 6 shows our last attempt
at protecting each singleton with its own critical region. It is substantially smaller
than all previous versions and should also work with OpenMP today. It uses
lock adapters (called omp lock ad) that are part of AthenaMP and are first
introduced in a different publication by the same authors [6].

Lock adapters are small classes that encapsulate the locking functionality pro-
vided by the parallel programming system. In AthenaMP, two of these classes
are included, omp lock ad for simple OpenMP locks and omp nest lock ad for
nested OpenMP locks. Lock adapters for different parallel programming systems
are trivial to implement. The initialization code for the locks is in the construc-
tors of the adapter classes, therefore their initialization happens automatically.
Destruction of the encapsulated lock is done in the destructor of the adapter. A
common mistake in OpenMP (forgetting to initialize a lock before using it) is

178 M. Suess and C. Leopold

therefore not possible when using lock adapters. For more details about the lock
adapters please refer to another publication by the same authors [6].

Because lock initialization happens automatically when an instance of the
class omp lock ad is created, our problem with the initialization having to be
carried out only once disappears. Or at least: it should disappear. Unfortunately,
some compilers we have tested this with call the constructor of the lock adapter
more than once in this setting, although it is a shared object. The next paragraph
explains this more thoroughly.

The difference between static variable construction and static variable ini-
tialization becomes important here, because static variable initialization works
correctly in a multi-threaded setting with OpenMP on all compilers we have
tested, but static variable construction has problems on some compilers. Static
variable initialization basically means declaring a variable of a primitive data
type and initializing it at the same time:

static int my int = 5 ;

This makes my int a shared variable and as in the sequential case, it’s initial-
ization is carried out once. This works on all compilers we have tested. Static
variable construction on the other hand looks like this:

static my c l a s s t my c lass ;

Since my class t is a user-defined class, it’s constructor is called at this point
in the program. Since the variable is static, it is a shared object and therefore the
constructor should only be called once. This does not happen on all compilers
we have tested (although we believe this to be a bug in them, since OpenMP
guarantees thread-safety of the base language) and is therefore to be used with
care. A trivial test program to find out if your compiler correctly supports static
variable construction with OpenMP is available from the authors on request.

This solution is the most elegant and also the shortest one to provide each
singleton with its own critical region. Nevertheless, our second problem is still
there: each access to the singleton has to go through a critical region, even
though only the creation of the singleton needs to be protected. We are going to
concentrate on this problem in the next section.

3.2 Double-Checked Locking and Why It Fails

Even in some textbooks, the double-checked locking pattern is recommended to
solve the problem of having to go through a critical region to access a single-
ton [4]. Our instance method with this pattern is shown in Figure 7.

Unfortunately, the pattern has multiple problems, among them possible in-
struction reorderings by the compiler and missing memory barriers, as explained
by Meyers and Alexandrescu [7], as well as problems with the OpenMP memory
model, as explained by de Supinski on the OpenMP mailing list [8]. Since the
pattern may and will fail in most subtle ways, it should not be employed.

Problems, Workarounds and Possible Solutions 179

// t h i s code i s wrong ! !
template <class Type>
class s i ng l e t on wrappe r {
static Type& in s t anc e ()
{
#pragma omp flush (i n s t anc e)
i f (i n s t anc e == 0) {

#pragma omp cr i t i c a l (A 2)
{

i f (i n s t anc e == 0)
i n s t an c e = new Type ;

}
}
return i n s t an c e ;

}
} ;

Fig. 7. instance method with double-
checked locking

template <class Type>
class s i ng l e t on wrappe r {
static Type∗ cache ;
static Type& in s t anc e ()
{
#pragma omp threadprivate (cache)
i f (cache == 0) {

cache =
&s ing l e t on <Type > : : i n s t anc e () ;

}
return ∗ cache ;

}
} ;

Fig. 8. instance method using caching

3.3 Using a Singleton Cache

Meyers and Alexandrescu [7] also suggest caching a pointer to the singleton in
each thread, to avoid hitting the critical region every time the instance method
is called. This can of course be done by the user, but we wanted to know if it was
possible to extend our singleton wrapper to do this automatically. We therefore
came up with the implementation shown in Figure 8.

The implementation solves the problem, as the critical region for each single-
ton is only entered once. It relies on declaring a static member variable thread-
private. Unfortunately, the OpenMP specification does not allow to privatize
static member variables in this way. In our opinion, this is an important omis-
sion not restricted to singletons, and therefore this point is raised again later in
this paper, when we put together all enhancement proposals for the OpenMP
specification in Section 5.

There is a workaround, however, which was suggested by Meyers in his land-
mark publication Effective C++ [9] as a solution to a different problem. Instead
of making the cache a static member variable (that cannot be declared thread-
private), it can be declared as a static local variable in the instance method.
Declaring local variables threadprivate is allowed by the specification, and this
solves the problem without any further disadvantages.

The whole solution unfortunately has some problems. It relies on threadpri-
vate data declared with the threadprivate directive, but in OpenMP these
have some restrictions. In a nutshell, these data become undefined as soon as
nested parallelism is employed or as soon as the number of threads changes over
the course of multiple parallel regions (see the OpenMP specification for de-
tails [10]). There is no way to work around these limitations for this solution,
therefore the user has to be made aware of them by carefully documenting the
restrictions. Fortunately, there is a different way to achieve the desired effect and
it is explained in the next section.

180 M. Suess and C. Leopold

template <class Type>
class s i ng l e t on wrappe r {
static Type& in s t anc e ()
{

static Type in s tanc e ;
return i n s t anc e ;

}
} ;

Fig. 9. instance method using a Meyers singleton

3.4 The Meyers Singleton

One of the most well-known singleton implementations today is the so-called
Meyers Singleton that is described in Effective C++ [9]. It is quite elegant,
small, and shown in Figure 9.

Meyers himself warns about using his implementation in a multi-threaded set-
ting, because it relies on static variable construction being thread-safe. Of course,
Meyers did not write about OpenMP. OpenMP guarantees thread-safety of the
base language in the specification, and this should cover proper construction of
static variables in a multi-threaded setting as well. Unfortunately, as described
in Section 3.1 in detail, our tests show that some OpenMP-aware compilers still
do have problems with this. Some of them were even calling the constructor of
the same singleton twice, which should never happen in C++. Therefore, al-
though it is the smallest and most elegant solution to the problem, it cannot be
recommended for everyone at this point in time.

4 Performance

This section discusses the performance of the proposed singleton wrapper imple-
mentations. We have setup a very simple test to access the performance of our
solution. It is shown in Figure 10.

int counte r = 0 ;
double f c oun t e r = 0 . 0 ;

double s t a r t = omp get wtime () ;

s ing l e ton wrapper <int > : : i n s t anc e () = 1 ;
s ing l e ton wrapper <double > : : i n s t anc e () = 1 . 0 ;
#pragma omp paral lel reduct ion (+: counter) reduct ion (+: f c oun t e r)
{

for (int i =0; i<numtries ; ++i) {
counter += sing l e ton wrapper <int > : : i n s t anc e () ;
f c oun t e r += sing le ton wrapper <double > : : i n s t anc e () ;

}
}

double end = omp get wtime () ;

Fig. 10. The code used to benchmark our singletons

Problems, Workarounds and Possible Solutions 181

Table 1. Measured benchmark timings in seconds, best of three runs, 10.000.000 Sin-
gleton accesses per thread - only the entries printed in bold are correct and safe!

Test Environment one crit multi crit local cache meyers dcl

AMD, Intel Comp., 4 Thr. 32.8 18.6 1.38 0.04 1.46
Sun, Sun Comp., 8 Thr. 176 182 n.a. 0.14 0.62
IBM, IBM Comp., 8 Thr. 72.7 71.7 0.34 0.01 0.85

Two different singletons are used in the example, one is an integer and one is
a double. The protected singletons will usually be classes, of course, but for our
simple performance measurements primitive data-types will do. The singletons
are initialized prior to the parallel region. Inside the parallel region, they are read
only and their result is added up and tested outside the parallel region for cor-
rectness (not shown in the figure). The results of our tests are shown in Table 1.

Here is a short summary of the table headings:

– one crit: a singleton wrapper using the same critical region for all protected
singletons (see Figure 2)

– multi crit: a singleton wrapper using a different critical region for all pro-
tected singletons with a lock adapter (see Figure 6)

– local cache: a singleton wrapper that caches a pointer to the singleton in
threadprivate memory (see Figure 8)

– meyers: a singleton wrapper built after the Meyers Singleton (see Figure 9)
- the numbers are only representative on the Intel Compiler, because the
other two do not construct static classes correctly

– dcl: for comparison, we have also included the double-checked locking version
(see Figure 7), although it is not safe to use!

As can be clearly seen by these numbers, the Meyers Singleton is to be pre-
ferred on all architectures, as it is the fastest by several orders of magnitude. We
don’t have any numbers for the version using a threadprivate cache on the Sun
Compiler, as it was not able to translate our code. We believe this to be a bug
in the compiler.

These results leave us with a disappointing situation: we have isolated a
best solution (Meyers Singleton), the solution should be legal judging from the
OpenMP specification, yet some compilers don’t implement it correctly. While
we cannot fix the compilers, what we can do at this point is provide a short test
program that shows which compilers behave correctly and which do not. It is
available from the authors on request.

5 OpenMP Enhancement Proposals for C++

In this section, we suggest enhancements to the OpenMP specification that we
found useful during the course of our work on AthenaMP. Most of them have
been sketched earlier in this publication already and are summarized here to
have them all in one place. All of them are useful beyond our simple singleton
implementations in our opinion.

182 M. Suess and C. Leopold

Lock Initialization with OMP LOCK INIT: We have shown in Section 3.1
that it would make sense to initialize OpenMP locks not only by using the
omp init lock function, but also with a macro, e. g. OMP LOCK INIT. This is
adapted from POSIX Threads, where PTHREAD MUTEX INITIALIZER can be used
to initialize a lock. If this idea was accepted into the standard, it would be
possible to initialize static locks using static variable initialization, a facility
that is guaranteed to happen only once in OpenMP.

Declaring Static Member Variables threadprivate: In Section 3.3 we have
shown that there is benefit in allowing static member variables to be declared
threadprivate. This would be a very simple change in the specification and has
already been implemented in the Intel Compiler.

Flushing Reference Variables not Allowed: Although it is not explicitly
forbidden in the specification to flush reference variables, most compilers do not
allow it either. A very common use case for reference variables is to pass param-
eters to functions by reference, either because they need to be changed inside
the function or because the object is large and copying it would include a perfor-
mance penalty. This is a recommended practice in many textbooks about C++.
We have hit this problem when implementing the once functionality touched
in Section 3.1, where we pass the second parameter to the once function by
reference to const and would like to flush it inside the function.

The specification only allows to flush pointers and not pointees. This is a
problem in our case, because reference variables are most likely implemented as
pointers. The OpenMP specification should therefore explicitly allow the special
case of flushing reference variables to be more conforming to recommended C++
practices.

6 AthenaMP

The functionality presented in this paper is part of the AthenaMP open source
project [1]. The main goal of this project is to provide implementations for a
set of concurrent patterns using OpenMP and C++. It includes both low-level
patterns like advanced locks, and higher-level ones. The patterns demonstrate
solutions to parallel programming problems as a reference for programmers,
and additionally can be used directly as generic components. The code is also
useful for compiler vendors testing their OpenMP implementations against more
involved C++ code, an area where many compilers today still have difficulties.
A more extensive project description is provided by one of the authors in his
weblog [11].

7 Related Work

Lots of work has been put into correctly implementing the singleton pattern. The
most famous resource on the topic is the book by Gamma et al. [2]. The idea

Problems, Workarounds and Possible Solutions 183

for our singleton wrapper is described by Schmidt et al. [4], along with double-
checked locking that was later proved to be an anti-pattern by Meyers and
Alexandrescu [7]. The idea for the singleton cache is also from the latter source.
More involved descriptions of singletons with different properties in C++ are
given by Alexandrescu [12]. Yegge describes most clearly why singletons should
be used with care [3].

8 Summary and Contributions

This work features two main contributions. First, we have described and evalu-
ated different implementation possibilities for a thread-safe singleton with C++
and OpenMP (Section 3), a work that has to our knowledge never been at-
tempted using these systems before. Second, we have highlighted some problems
encountered with the present OpenMP specification and C++. Among them are
the inability to initialize static locks with a macro, the inability to declare static
member variables threadprivate, and the problem of not being allowed to flush
reference variables.

Acknowledgments

We are grateful to Björn Knafla for proofreading the paper and for guiding
us through the dark corners of C++ when needed. We thank the University
Computing Centers at the RWTH Aachen, TU Darmstadt and University of
Kassel for providing the computing facilities used to carry out our unit tests on
different compilers and architectures.

References

1. Suess, M.: AthenaMP (2007), http://www.athenamp.org/
2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)
3. Yegge, S.: Singleton Considered Stupid (2004),

http://steve.yegge.googlepages.com/singleton-considered-stupid

4. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture. Networked and Concurrent Objects, vol. 2. John Wiley and Sons,
Chichester (2000)

5. Suess, M.: How to do it ONCE in OpenMP (2006), http://www.thinking-

parallel.com/2006/09/20/how-to-do-it-once-in-openmp/

6. Suess, M., Leopold, C.: Generic Locking and Deadlock-Prevention with C++. In:
Proceedings of Parallel Computing (ParCo 2007) (to appear, 2007)

7. Meyers, S., Alexandrescu, A.: C++ and the Perils of Double-Checked Locking -
Part 1. Dr. Dobb’s Journal, 46–49 (2004)

8. de Supinski, B.R.: [Omp] A memory model question (2006),
http://openmp.org/pipermail/omp/2006/000479.html

9. Meyers, S.: Effective C++: 55 Specific Ways to Improve Your Programs and De-
signs, 3rd edn. Addison-Wesley Professional, Reading (2005)

http://www.athenamp.org/
http://steve.yegge.googlepages.com/singleton-considered-stupid
http://www.thinkingparallel.com/2006/09/20/how-to-do-it-once-in-openmp/
http://www.thinkingparallel.com/2006/09/20/how-to-do-it-once-in-openmp/
http://openmp.org/pipermail/omp/2006/000479.html

184 M. Suess and C. Leopold

10. OpenMP Architecture Review Board: OpenMP Specifications (2005),
http://www.openmp.org/specs

11. Suess, M.: A Vision for an OpenMP Pattern Library in C++ (2006), http://www.
thinkingparallel.com/2006/11/03/a-vision-for-an-openmp-pattern-library

-in-c/

12. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley Professional, Reading (2001)

http://www.openmp.org/specs
http://www.thinkingparallel.com/2006/11/03/a-vision-for-an-openmp-pattern-library-in-c/
http://www.thinkingparallel.com/2006/11/03/a-vision-for-an-openmp-pattern-library-in-c/
http://www.thinkingparallel.com/2006/11/03/a-vision-for-an-openmp-pattern-library-in-c/

Web Service Call Parallelization Using OpenMP

Sébastien Salva1, Clément Delamare2, and Cédric Bastoul3

1 LIMOS, Université d’Auvergne Clermont 1
Campus des Cézeaux

F-63173 Aubière, France
salva@iut.u-clermont1.fr

2 DGI, Direction Générale des impôts, France
86 allée de Bercy, F-75012 Paris, France

clement.delamare@dgi.finances.gouv.fr
3 LRI, ALCHEMY, Université Paris-Sud

Bâtiment 490, F-91405 Orsay Cedex, France
cedric.bastoul@lri.fr

Abstract. Since early works, web servers have been designed as parallel
applications to process many requests at the same time. While web ser-
vice based applications are performing more and more, larger and larger
transactions, this parallelization culture still not reached the client side.
Business to Business (B2B) applications are becoming intensive users of
web transactions through Service Oriented Architecture Standard. As
multicore systems are now widely available, parallelization seems the
right way to fit the need of such applications. In this paper, we describe
an API based on OpenMP for transparently parallelizing web service
calls, i.e. the serialization, deserialization and connection processes. Our
API is mainly based on a software pipeline which splits web service calls
into several tasks. Both synchronous and asynchronous modes can be
used with this API to call web services. We present experimental evidence
demonstrating the ability of our API to achieve high level performance.

1 Introduction

SOA (Service Oriented Architecture) is emerging as the standard paradigm to
develop business applications over Internet, like Business to Business (B2B) and
Business to Consumer (B2C) applications which involve the transaction of goods
or services. Such applications are mainly based on web service interactions. Web
services represent objects whose methods can be called through Internet. They
generally accept parameters (objects) and generate a response. Both parameters
and responses are serialized/deserialized by using an XML based protocol, named
SOAP (Service Oriented Architecture Protocol).

Business applications, like banking systems, require a constantly growing num-
ber of large data transactions. Those data flood capacity as the throughput is
increasing by ten times nowadays. As a consequence, such applications require
more and more performance, especially for the costly data serialization/dese-
rialization processes. For B2B applications which perform a lot of web service

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 185–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 S. Salva, C. Delamare, and C. Bastoul

transactions, the use of monocore systems is becoming a limitating factor. Be-
cause of the inherently parallel nature of web service calls, the trend is to benefit
from multicore systems to improve server capacity, as Sun T1 (Niagara) architec-
ture shows. However, a trivial parallelization scheme does not reach the maximal
service performance because of the limited number of cores and a suboptimal
use of resources when server threads stall, waiting for other server responses.

In this paper, we present a solution using OpenMP to efficiently parallelize
web service based applications on multicore systems. We describe an API for
transparently parallelizing web service calls on multicore systems. This API is
easy to use: the developer gives the web services to call and its code to manage
web service responses (they can be stored or analyzed to produce other calls).

Our API is mainly based on a software pipeline whose stages split web service
calls into independent tasks and parallelize their execution. We show that this
solution performs better than simple parallelization schemes when using both
synchronous web service which responds in some milliseconds, and asynchronous
ones whose responses may be received from some seconds to some days later.
Because Java is widely used for coding web service based applications, our API
is written using this language. We have also used the OpenMP Jomp API [1] for
the parallelization. OpenMP brings many advantages, especially for the software
pipeline generation and for the parallelization of the serialization/deserialization
processes, which are mainly based on loops.

The remainder of this paper is structured as follow: Section 2 provides an
overview of the web service paradigm and of a web service based project, Coper-
nic [2]. Then, we present some related works. Section 3 describes our API mainly
based on a software pipeline. Section 4 shows some experimentations. Finally,
Section 5 gives some perspectives and conclusions.

2 Web Services Overview and Related Work

Web services are “self contained, self-describing modular applications that can be
published, located, and invoked across the web” [3]. The Web Service framework,
which is a platform independent standard, is composed of three major axes:

– The service description which models how to invoke the service by defining
its interface and its parameters. This description, called WSDL (Web Ser-
vices Description Language) file [4], gathers several parts describing types,
accessible methods, query and response message structures, binding and
transport options.

– The definition and the construction of XML messages, based on the Simple
Object Access Protocol (SOAP). SOAP aims to invoke service operations
(object methods) on the Internet and to serialize/deserialize data. When
SOAP is used over the HTTP layer, the web service is said to be called in
synchronous mode. When it is used over the SMTP layer, it is said to be
called in asynchronous mode.

– The discovery of the service. Web services are gathered into UDDI (Uni-
versal Description, Discovery Integration) registries. These registries can be

Web Service Call Parallelization Using OpenMP 187

consulted manually or automatically using dedicated APIs to find specific
web services. The WSDL files are grouped into these registries.

Web services allow to externalize functional code of companies in a standard-
ized way. Web Services are mainly used for B2B or B2C transactions, to exchange
data and externalize functional code.

An example of advanced SOA based project is Copernic [2]. Copernic is a
modernization program that will recast and upgrade the entire fiscal information
system in France. At the moment, it covers 70 individual projects, managed by
the Direction Générale des Impôts and the Direction Générale de la Comptabilité
Publique. Its objective is to enable the French tax administration to offer new,
citizen-centered services and to boost the efficiency of its internal processes. A
lot of data is managed with Copernic, like the PERS reference which models a
citizen or the TOPAD reference which models all the French roads with postal
addresses. Such data are accessed by web services to modify or consult them.
Copernic produces large web service transactions, especially with specific tasks,
like the edition of the 33 millions income tax returns which uses many references
(PERS, TOPAD and many others ones).

Experiences, to parallelize web servers using OpenMP, have been gained by
Balart et al. [5], but few solutions have been proposed to parallelize web service
calls even in the general case. Kut and Birant suggested an approach which
uses some threads to call several web services in the same time [6]. We show,
in Section 3.1 that this method should not be used when the response receipt
delay is long (especially with asynchronous web services). Wurz and Schuldt
consider another approach for web service parallelization: if the original request
is composed of several independent sub-requests, this one is split and the sub-
requests are executed in parallel [7]. This solution offers good results, however
most of web services use atomic requests (i.e., they are not composed of sub
requests).

3 Web Service Call Parallelization

SOA based applications (for e-commerce, B2B or B2C applications) perform
large transactions with web services. There are several advantages to parallelize
such services: from being able to call several other services at the same time, up
to reduce the time necessary to serialize/deserialize data.

Here, we focus on the client side, i.e., applications that call successively web
services which may produce themselves other web service calls. In this section,
we propose and describe an API which aims at easily and efficiently constructing
such applications. For a developer, this API is mainly based on a class named
ParallelClient, which is used to set the number of working threads and to add
web service calls. The developer has only to focus on the implementation of
the web service responses management: data received from web services can be
either stored or analyzed. The rest of the client application, i.e., the data seri-
alization/deserialization processes and the web service calls, is made in parallel
transparently thanks to the API.

188 S. Salva, C. Delamare, and C. Bastoul

Web service based applications are typically written in C# or in Java. To
construct a parallel client API, we chose Java and the Jomp OpenMP API [1].
Jomp is a compiler translating Java source code with OpenMP directives to
another code using Java threads to implement parallelism.

In the following, we consider that a complete web service call is composed of
the following steps:

1. the S step: a data serialization into a SOAP-XML document,
2. the C step: a web service connection, that is a TCP connection with an

Internet service provider to send the serialized data and to receive a SOAP-
XML response,

3. the D step: a response deserialization whose memory size may be important
(100MB or even more)

4. the P step: obtained data are stored in a persistent infrastructure like a
database, or may be analyzed.

3.1 A Naive Solution: Using the Task Pool Paradigm

Because of the inherently parallel nature of web service calls, a basic solution
would be to use a task pool where one task represents one web service call
(including all the steps previously defined). Therefore, with this solution, if n
threads are available, n calls can be easily done in parallel, assuming n cores are
available. The task pool algorithm is described in Figure 1.

1 pool i s a FIFO conta in ing task s ;
2 setNumThreads(n) ;
3

4 // omp p a r a l l e l shared (pool) p r i v a t e (. . . .) {
5 // omp c r i t i c a l {
6 task=read (pool) ;}
7 whi le (task != NULL) {
8 SOAPdata=S e r i a l i z e (task . data) ;
9 Response=WebService . c a l l (SOAPdata , endpoint) ;
10 Object [] obj=De s e r i a l i z e (Response) ;
11 Per s i s t en cy (obj) ;
12 // omp c r i t i c a l {
13 task=read (pool) ;}
14 }
15 }

Fig. 1. The task pool pseudocode

Figure 2 illustrates a task pool execution with only two threads. After each
web service connection, each thread must wait for the web service data receipt
before deserializing it. It follows, for n threads after n web service connections,
the application may be blocked. When web services are called in synchronous

Web Service Call Parallelization Using OpenMP 189

Fig. 2. Two threads executing two web service calls

mode, the application is blocked during some seconds. However, in asynchronous
mode, the client application may be blocked during some days. Furthermore if
the target architecture has less than n cores (or n processors for symmetric mul-
tiprocessor architectures) this policy will result in thread interleaving, with a po-
tentially high cost induced by thread management and context switching. Hence
this solution does not appear as the best one to parallelize web service calls.

3.2 A Better Resource Management Using the Pipeline Paradigm

The web service call steps are executed successively and are completely indepen-
dent. As a result the pipeline paradigm can be used to parallelize web service
calls. We use a pipeline of four stages, one for each step described previously: a
serialization stage (S), a web service call stage (C), a deserialization stage (D)
and a stage for the persistency (P). This scheme is depicted in Figure 3(a).

(a) A software pipeline for web ser-
vice calls

(b) The software pipeline blocked
by web service connections

Fig. 3.

This solution requires at least four cores, each of them being dedicated to
a thread processing a given step. This solution avoids thread interleaving and
achieves a better use of resources since the system overlaps service call stalling
time (while waiting for a response) with processing.

However, such a pipeline architecture also has some drawbacks:

– The web service connection and the waiting of its response is usually a
blocking operation. As the response receipt delay may be long (until more
than one day in asynchronous mode), the pipeline may be blocked as well.
Therefore, the two last stages may stay empty until a response is received.

190 S. Salva, C. Delamare, and C. Bastoul

In Figure 3(b), we illustrate two web service calls: the C stage must receive
the response of the first web service before calling the second one. As a
consequence, the pipeline is blocked. In this case, there are a few advantages
to parallelize this step.

– The serialization and deserialization processes may require long time exe-
cutions. For instance, a deserialization of 100MB of SOAP-XML data may
require more than 30 minutes with a recent monocore processor. As a conse-
quence, the load balancing between the pipeline stages may be catastrophic
if there is a lot of data to serialize/deserialize. So these two steps must be also
parallelized to reduce the execution time of the serialization/deserialization
stages.

Despite these drawbacks, the present solution appears to be better than the
trivial one. Indeed the S stage can always work until there are web services to
call, since it is never blocked.

3.3 An Optimized Pipeline for Web Service Calls

A refinement of the previous four stage pipeline solution is to extend the first
three stages. We do not develop the Persistency stage here because this one
depends mainly on the data storage.

The Call Stage. For the web service call stage, we use the ProviderConnection
architecture proposed by SUN [8]. In this one, the web service connection is not

1 FIFO f i f o 1 , f i f o 2 , f i f o 3 ;
2 //omp p a r a l l e l s e c t i o n s {
3

4 // s e r i a l i z a t i o n code
5 task= read (f i f o 1) ;
6 task2 . s e r i a l i z e d d a t a=s e r i a l i z e (task . data) ;
7 wr i t e (task2 , f i f o 2) ;
8 }
9 //omp se c t i on {
10 //web s e r v i c e connect ion code
11 . . .
12 }
13 //omp se c t i on {
14 // d e s e r i a l i z a t i o n code
15 . . .
16 }
17 //omp se c t i on {
18 // data s torage code or data an a l y s i s
19 . . .
20 }
21 }

Fig. 4. The pipeline pseudocode

Web Service Call Parallelization Using OpenMP 191

made directly by the client application but by using a service (daemon) which
can be localized in the same computer than the Client or in a gateway. In our
case, this service is composed of two servlets, the first one is used for calling the
web services, and the other one receives the web service responses. So, with such
an architecture, we perform non blocking web service calls.

The call stage, illustrated in Figure 5, is finally composed of a task pool
where a task is an object {call identifier, URL, method, Message} which models
a web service call. An available thread executes a task (1). And it calls the web
service by using the Send servlet (2). The Send servlet makes a connection to
the web service and sends SOAP-XML data (3). The Response servlet receives
the response (4). Each response is given to the Deserialization stage (5).

Fig. 5. The call stage architecture

By using such an architecture, the stages are never blocked. The S stage can
work until there is web services to call. And the C stage can now establish all
the connections. When a response is received, this one is deserialized by the D
stage and stored by the P one. Each web service call is numbered by an unique
identifier, thus responses may be received in any order. In the synchronous mode,
all the stage works. However, in asynchronous mode, if the receipt delay is long,
some stages may become idle. So, in this case, the load balancing is not good.
We give two approaches to solve this problem in the perspectives.

The Serialization/Deserialization stages. Serialization and deserialization
stages are both parallelized using a team of threads. As the data (objects) to seri-
alize are independent, we use one thread team to serialize in parallel all the objects,
then the final XML-SOAP document is generated. Similarly, all the elements of a
SOAP-XML document can be extracted and then deserialized in parallel by an-
other team of threads. The algorithms of these stages are given in Figure 6:

We show in the following section that the performance of the optimized
pipeline is better than the task pool solution. And more precisely, the longer

192 S. Salva, C. Delamare, and C. Bastoul

1 S e r i a l i z a t i o n Stage
2 Input : L i s t o f nb ob j e c t s
3 Output : SOAP XML document document
4 A l i s t L f i n a l o f nb empty elements i s de f i ned
5 // omp p a r a l l e l f o r p r i va t e (element , i) shared (List , L f i n a l)
6 f o r (i =0, i<nb ; i++){
7 Read L i s t [i] ;
8 (XML element) L f i n a l [i]= S e r i a l i z e L [i] ; }
9 f o r (i =0; i<nb ; i++)
10 document . add (L f i n a l [i]) ;
11

12 De s e r i a l i z a t i o n Stage
13 Input : SOAP XML document document
14 Output : L i s t o b j e c t o f nb ob j e c t s
15 nb=numbers o f e l ements (ob j e c t s) in the SOAP document
16 A l i s t L o f nb empty elements i s de f i ned
17 f o r (i =0; i<nb ; i++)
18 L [i]=document . get e l ement (i) ;
19 //omp p a r a l l e l f o r p r i va t e (object , i) shared (List , L)
20 f o r (i =0, i<nb ; i++){
21 L i s t o b j e c t [i]= D e s e r i a l i z e L [i] ; }

Fig. 6. The Serialization/Deserialization stage pseudocode

is the web service data receipt, the better are the performances. This is a con-
sequence of the unblocked connection to web services that the pipeline brings.
For a task pool solution, if we use n threads for 2n transactions, the first n
transactions are performed, then the next ones are done too when the first n
transactions are finished. With the optimized pipeline solution, all the transac-
tions are executed in succession and responses are given to the deserialization
stage in succession too. By considering only the web service connection time,
if this one takes on average 5 minutes, the task pool solution needs at least 10
minutes to finish 2n transactions. The pipeline solution needs 5 minutes.

4 Experimentation Based on the Copernic Project

Our experimental setup was based on dual processor Xeon systems (each pro-
cessor is single-core) taking advantage of hyperthreading. Each system is able to
run 4 threads in parallel (each processor may run two threads concurrently). Our
API has been applied onto a modified version of the Copernic Framework [2].
Operating Systems were based on RedHat Advance Server 4 with JAVA applica-
tions running thanks to Sun JDK 1.5.0.9 and Jomp API 1.0b. The first system is
dedicated to service, provided by JBOSS 4.0.4-GA, while the other one is on the
client side. Because our work focuses on the client side, the server application
has been built in such a way it is not a bottleneck. However, it was possible to
tune the server response time.

Not surprisingly, parallelizing web service calls lead to major performance
improvements on our multithreading-capable systems. For transactions with very
small response time, the cost of thread management and probably the limitations

Web Service Call Parallelization Using OpenMP 193

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10

S
pe

ed
up

Total Thread Number

 1s Service Time, Thread Pool
 1s Service Time, Pipeline
 5s Service Time, Thread Pool
 5s Service Time, Pipeline
10s Service Time, Thread Pool
10s Service Time, Pipeline

Fig. 7. Speedup for Various Waiting Times and Solutions

of the hyperthreading technology limits the global speedup to a factor of 3.4
instead of an ideal factor of 4. The optimized pipeline solution gives by far the
best results compared to the naive scheme.

Our results are depicted in Figure 7. We compared the task pool and the
optimized pipeline solutions for various response delays and number of threads.
We consider for each experiment 100 service calls with 4000 data to serialize/de-
serialize and a response time of 1s, 5s and 10s. The reference speed for speedup
computation is the naive scheme using a single thread. For small response times
and at least 5 threads, the pipeline solution is a 10% improvement over task
pool solution thanks to a lighter thread management cost. The speedup of the
pipeline solution over task pool solution grows dramatically with response wait-
ing time, from 30% for 5s response time to more than 60% for 10s response time,
since the optimized solution is less challenged by blocked threads.

5 Conclusion and Perspectives

In this paper, we propose an API to efficiently parallelize web service calls. This
API is mainly based on a software pipeline which splits web service calls into
several tasks, taking advantage of OpenMP for a better use of resources. We
have shown that any web service can benefit from our API (both synchronous
and asynchronous ones). Using OpenMP to design such an API showed high
productivity with slight impact on the original code. To analyze which level of
performance and productivity can be reached using different solutions based on,

194 S. Salva, C. Delamare, and C. Bastoul

e.g., pthreads is left for future works. The API development is still in progress,
and there is room for many improvements:

– Others stages could be added in the pipeline to perform optional tasks: for
example, a web service search stage which would aim to find specific web
services in several UDDI registries, or an XML data compression stage for
reducing the network load.

– The stage load between is not necessarily balanced. For example, if the web
service responses are large, the deserialization stage load will be higher than
the others. The load can be balanced by setting more threads to this stage.
However, the problem is that each web service call can be different, thus the
load balancing should be changed at each call. One approach could be the
load balancing prediction by estimating the response sizes. Another approach
could be to consider each couple (web service task, stage) as a global task in
a task pool. In this case, the load does not depend on the pipeline stages but
on the threads (cores) used by this task pool. Developing and experimenting
with these solutions are the object of ongoing work.

Acknowledgements

The authors would like to thank the IWOMP 2007 anonymous reviewers for
their help in improving the quality of the paper.

References

1. Bull, J., Kambites, M.: JOMP, an OpenMP-like interface for Java. In: Proc. of the
ACM 2000 Conf. on Java Grande, San Francisco, pp. 44–53 (2000)

2. Direction Générale des Impôts: The copernic tax project (2006),
http://en.wikipedia.org/wiki/Copernic tax project

3. Tidwell, D.: Web services, the web’s next revolution. In: IBM developerWorks (2000)
4. Consortium, W.W.W.: Web services description language (wsdl) (2001)
5. Balart, J., Duran, A., Gonzalez, M., Martorell, X., Ayguade, E., Labarta, J.: Expe-

riences parallelizing a web server with OpenMP. In: First International Workshop
on OpenMP (IWOMP 2005), Eugene, Oregon (2005)

6. Kut, A., Birant, D.: An approach for parallel execution of web services. In: ICWS
2004. Proceedings of the IEEE International Conference on Web Services (ICWS
2004), Washington, DC, USA, pp. 812–813. IEEE Computer Society Press, Los
Alamitos (2004)

7. Wurz, M., Schuldt, H.: Dynamic parallelization of grid enabled web services. In:
Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005.
LNCS, vol. 3470, pp. 173–183. Springer, Heidelberg (2005)

8. Sun Microsystems: Web Services made easier: the Java APIs and architectures for
XML. Sun Microsystems (2002), http://java.sun.com/xml/webservices.pdf

http://en.wikipedia.org/wiki/Copernic_tax_project
http://java.sun.com/xml/webservices.pdf

Distributed Implementation of OpenMP Based on
Checkpointing Aided Parallel Execution

Éric Renault

GET / INT — Samovar UMR INT-CNRS 5157
91011 Évry, France

eric.renault@int-evry.fr

Abstract. Checkpointers are used to secure the execution of sequential and par-
allel programs. This article shows that they can also be used to generate a parallel
program from a sequential program automatically, this program being executed
on any kind of distributed parallel system. The article also presents how this new
technique can be included inside the usual compilation chain to provide a dis-
tributed implementation of OpenMP. Finally, some performance measurements
are discussed.

1 Introduction

Radical changes in the way of taking up parallel computing has operated during the
past years, with the introduction of cluster computing [1], grid computing [2], peer-to-
peer computing [3]... However, if platforms have evolved, development tools remain the
same. As an example, HPF [4], PVM [5], MPI [6] and more recently OpenMP [7] have
been the main tools to specify parallelism in programs (especially when supercomputers
were the main issue for parallel computing), and they are still used in programs for
cluster and grid architectures. Somehow, this shows that these tools are generic enough
to follow the evolution of parallel computing. However, developers are still required
to specify almost every information on when and how parallel primitives (for example
sending and receiving messages) shall be executed.

Many works [8,9] have been done in order to automatically extract parallel opportu-
nities from sequential programs in order to avoid developers from having to deal with
a specific parallel library, but most methods have difficulties to identify these paral-
lel opportunities outside nested loops. Recent research in this field [10,11], based on
pattern-maching techniques, allows to substitute part of a sequential program by an
equivalent parallel subprogram. However, this promising technique must be associated
an as-large-as-possible database of sequential algorithm models and the parallel imple-
mentation for any target architectures for each of them.

At the same time, the number of problems that can be solved using parallel ma-
chines is getting larger everyday, and applications which require weeks (or months, or
even more...) calculation time are more and more common. Thus, checkpointing tech-
niques [12,13,14] have been developed to generate snapshots of applications in order
to be able to resume the execution from these snapshots in case of problem instead
of restarting the execution from the beginning. Solutions have been developed to re-
sume the execution from a checkpoint on the same machine or on a remote machine,

B. Chapman et al. (Eds.): IWOMP 2007, LNCS 4935, pp. 195–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

196 É. Renault

or to migrate a program in execution from one machine to another, this program being
composed of a single process or a set of processes executing in parallel.

This article adresses a different problem. Instead of securing a parallel application
using checkpointing techniques, checkpointing techniques are used to introduce paral-
lel computing inside sequential programs, i.e. to allow the parallel execution of parts of
a program for which it is known these parts can be executed concurrently. This tech-
nique is called CAPE which stands for Checkpointing Aided Parallel Execution. It is
important to note that CAPE does not detect if parts of a program can be executed in
parallel. We consider it is the job of the developer (or another piece of software) to
indicate what can be executed in parallel. CAPE consists in transforming an original
sequential program into a parallel program to be executed on a distributed parallel sys-
tem. As OpenMP already provides a set of compilation directives to specify parallel
opportunities, we decided to use the same in order to avoid users from learning yet an-
other API. As a result, our method provides a distributed implementation of OpenMP
in a very simple manner.

As presented in this article, CAPE provides three main advantages. First, there is
no need to learn yet another parallel programming environment or methodology as
the specification of parallel opportunities in sequential programs is performed using
OpenMP directives. Second, CAPE inherently introduces safety in the execution of
programs as tools for checkpointing are used to run concurrent parts of programs in
parallel. Third, more than one node is used only when necessary, i.e. when a part of
the program requires only one node to execute (for example if this part is intrinsincly
sequential), only one node is used for execution. As performance measurements show,
the only drawback of the current implementation is that the checkpointer we used for
experiments generates very large images. We are investigating to significantly reduce
the overhead involved by the management of these images.

Other works have presented solutions to provide a distributed implementation of
OpenMP [15]. Considering that OpenMP has been designed for shared-memory parallel
architectures, the first solution was consisting in executing OpenMP programs on top of
a distributed shared memory based machine [16]. More recently, other solutions have
emerged, all aiming at transforming OpenMP code to other parallel libraries, like Global
Arrays [17] or MPI [18].

The article is organized as follows. First, we present CAPE, our method to make
a parallel program from a sequential program. Then, we show that the result of the
execution of the generated parallel program is equivalent to the execution of the original
sequential program. The next section presents how we have developed a distributed
implementation of OpenMP on top of CAPE. The last section provides the performance
results we have measured on one of our clusters.

2 CAPE

CAPE, which stands for Checkpointing Aided Parallel Execution, consists in modifying
a sequential program (for which parts are recognized as being executable in parallel) so
that instead of executing each part the one after the other one on a single machine, parts
are automatically spread over a set of machines to be executed in parallel. As lots of

Distributed Implementation of OpenMP 197

works are on the way for distributing a set of processes over a range of machines, this
article concentrates on how to transform the sequential piece of code to a parallel code.
Thus, in the following, we consider that another application (like Globus [19,20], Con-
dor [21,22] or XtremWeb [23,24]) is available to start processes on remote nodes and
get their results from there. In this section, this application is called the “dispatcher”.
CAPE is based on a set of six primitives:

– create (filename) stores in file “filename” the image of the current process. There
are two ways to return from this function: the first one is after the creation of file
“filename” with the image of the calling process; the second one is after resuming
the execution from the image stored in file “filename”. Somehow, this function is
similar to the fork () system call. The calling process is similar to the parent process
with fork () and the process resuming the execution from the image is similar to
the child process with fork (). Note that it is possible to resume the execution of the
image more than once; there is no such equivalence with the fork () system call.
The value returned by this function has a similar meaning as those of the fork ()
system call. In case of error, the function returns -1. In case of success, the returned
value is 0 if the current execution is the result of resuming its execution from the
image and a strictly positive value in the other case (unlike the fork () system call,
this value is not the PID of the process resuming the execution from the image
stored in the file).

– diff (first, second, delta) stores in file “delta” the list of modifications to perform
on file “first” in order to obtain file “second”.

– merge (base, delta) applies on file “base” the list of modifications from file “delta”.
– restart (filename) resumes the execution of the process which image was previ-

ously stored in “filename”. Note that, in case of success, this function never returns.
– copy (source, target) copies the content of file “source” to file “target”.
– wait for (filename) waits for any merges required to update file “filename” to

complete.

The following presents two cases where CAPE can be applied automatically with
OpenMP: the first case is the “parallel sections” construct and the second case is the
“parallel for” construct.

In order to make the piece of code in Fig. 1 readable, operations for both the mod-
ified user program and the dispatcher have been included, and operations executed by
the dispatcher are emphasized. Operations performed by the dispatcher are initiated by
the modified user program while sending a message to the dispatcher. Operations are
then performed as soons as possible but asynchronously regarding the modified user
program.

Error cases (especially when saving the image of the current process) are not repre-
sented in Fig. 1(c). In some cases, a test is performed just after the creation of a new
image in order to make sure it is not possible to resume the execution from the image
direcly. This kind of image is used to evaluate variables updated by a specific piece of
code and its execution is not intended to be effectively resumed.

The “Parallel Sections” Construct. Let P1 and P2 be two parts of a sequential program
that can be executed concurrently. Fig. 1(a) presents the typical code one should write

198 É. Renault

OpenMP templates

pragma omp parallel sections
{

pragma omp section
P1

pragma omp section
P2

}

(a) Parallel sections construct

pragma omp parallel for
for (A ; B ; C)

D

(b) Parallel for construct

CAPE templates

parent = create (original)
if (parent)

copy (original, target)
ssh hostx restart (original)
P1

parent = create (after1)
if (parent)

diff (original, after1, delta1)
merge (target, delta1)
wait for (target)
restart (target)

else
P2

parent = create (after2)
if (parent)

diff (original, after2, delta2)
merge (target, delta2)

(c) Parallel sections construct

parent = create (original)
if (! parent)

exit
copy (original, target)
for (A ; B ; C)

parent = create (beforei)
if (parent)

ssh hostx restart (beforei)
else

D
parent = create (afteri)
if (! parent)

exit
diff (beforei, afteri, deltai)
merge (target, deltai)
exit

parent = create (final)
if (parent)

diff (original, final, delta)
wait for (target)
merge (target, delta)
restart (target)

(d) Parallel for construct

Fig. 1. Templates for both OpenMP and CAPE

when using OpenMP and Fig. 1(c) presents the code to substitute to run P1 and P2 in
parallel with CAPE.

The first step consists in creating an “original” image used to resume the execution
on a distant node, calculate the delta for each part executed in parallel and build the
“target” image to resume the sequential execution at the end.

The second step consists in executing parts and generating deltas. Thus, the local
node asks the dispatcher to resume the execution of the “original” image on a distant

Distributed Implementation of OpenMP 199

node. Parts are executed, two “after” images are generated to produce two “delta” files;
then, these “delta” files are merged to the “target” image; all these operations are exe-
cuted concurrently. The main difficulty here is to make sure that both the current frame
in the execution stack and the set of processor registers are consistent. However, this
can be easily achieved using a good checkpointer.

The last step consists in making sure all “delta” files have been included in the “tar-
get” image and then restarting the “target” image in the original process.

The “Parallel for” Construct. In the case of for loops (see Fig. 1(b) and Fig. 1(d)),
the first step consists in creating an “original” image for both having a reference for
the “final” image and having a basis for the “target” image which is used at the end to
resume the execution of the program sequentially after having executed the whole loop
in parallel. Thus, once created, the “original” image is copied to a “target” image which
will be updated step by step using deltas after the execution of each loop iteration.

The second step consists in executing loop iterations. After executing instruction A
and checking condition B is true, a “before” image is created. When returning from
function create (before), two cases are possible: either the function returns after creat-
ing the image, or the function returns after resuming from the image. In the first case,
the dispatcher is asked to restart the image on a remote part and then the execution is
resumed on the next loop iteration, i.e. executing C, evaluating B... In the second case,
the loop iteration is executed and another image is saved in order to determine what are
the modifications involved by the execution of this loop iteration (these modifications
are then merged asynchronously to the “target” image by the dispatcher).

Once all loop iterations have been executed, the third step consists in creating the
“final” image which difference from the “original” image is used in order to set in
image “target” modifications involved when executing C and evaluating B for the last
time. Moreover, it ensures that the current frame in the execution stack is correct. This
is the reason why it is necessary to wait for all other merges to be performed before
including the one from “final”. When restarting image “target”, the execution resumes
after create (final). As the process resumes its execution from an image, the last four
lines in Fig. 1(d) are not executed the second time.

3 Proof of Concept

In order to prove that our solution is correct, one must show that when executing the
program, modified or not by CAPE, the result is the same. That is, the set of updated
variables (and the associated values) in the original program is the same for both exe-
cutions. Two assumptions have to be made.

The first assumption is that the implementation of functions related to image man-
agement do not involve onboard effects on the rest of the program. That is, the call to
these functions and data structures used by these functions do not change the behaviour
of the original program. In fact, functions dedicated to image management can be un-
derstood as a transparent set of services provided to the application, and executing a
program with or without CAPE must provide the same result.

This assumption is not irrealistic as some checkpointers can be dynamicly linked to
the program on which checkpoints have to be performed. In this case, creating an image

200 É. Renault

and resuming the execution from an image can be performed from outside the program,
having the program (and its behaviour) unchanged. Thus, both create () and restart ()
functions can be considered as onboard-effect free. The other four functions (diff (),
merge (), copy () and wait for ()) are only dealing with files and no specific data
structure is used inside the program. As a result, it is correct to consider that functions
related to image management do not involve onboard effects on the user program.

The second assumption is that the parts of the program which are executed in parallel
satisfy Bernstein’s conditions. In fact, CAPE does not aim at detecting parallel oppor-
tunities in sequential programs. It aims at executing parts of a sequential program on a
set of nodes of a parallel machine. In order to do so, parts that can be executed in paral-
lel must be identified either by the programmer or by another piece of software. Thus,
in the following, we assume that parts to be executed in parallel satisfy Bernstein’s
conditions.

Let Ii be the set of variables read when executing part Pi and Oi be the set of vari-
ables written when executing part Pi. Note that in this context, a “variable” shall be
understood in the most general way, i.e. as a “memory location”. According to Bern-
stein’s conditions, both P1 and P2 can be executed concurrently if and only if all fol-
lowing three conditions are satisfied: I1 ∩ O2 = O1 ∩ I2 = O1 ∩ O2 = ∅.

The first two Bernstein’s conditions indicate that P1 and P2 can be started indepen-
dently, i.e. none requires the other one to be executed before starting its own execution.
The third Bernstein’s condition, indicates that no updated data is shared by P1 and P2.
This means that the “target” image (the one used to resume the execution after the par-
allel execution of P1 and P2) can be built in any order by updating data with the content
of variables modified during the execution of P1 and P2.

Moreover, when an image is created just before the execution of the piece of code
Pi and another one just after, the difference between both (the “deltai” computed with
function diff ()) stores the list of all variables updated during the processing of Pi. In
other words, file “deltai” represents Oi for part Pi.

Then, as “deltai” files are merged to the original image to produce the “target” image
and as, according to the third Bernstein’s condition, there is no variable shared by two
“delta” files, the “target” image contains all updates performed by each part.

Thus, as no part requires data from the other one (first two Bernstein’s conditions),
as no variable is updated by both P1 and P2 (third Bernstein’s condition), and as each
modification involved by the execution of both P1 and P2 is taken into account before
returning in the sequential execution, executing in this context a program sequentially
or in parallel with CAPE provides the same result.

Bernstein’s conditions are also used to define the concurrency relation (P1||P2 if
and only if P1 and P2 satisfy Bernstein’s conditions). It is then possible to extend the
concurrency relation to a larger number of Pi with the following relation:

P1||P2||...||Pn ≡ Pi||Pj ∀(i, j) ∈ [1, n]2 i �= j

It is also possible to generalize our method to any number of Pi in the same way. This
is especially interesting for loops.

Distributed Implementation of OpenMP 201

4 Distributed Implementation of OpenMP Using CAPE

In order to valid the concepts associated to CAPE, we are developing a distributed
implementation of OpenMP. The current implementation is based on top of CKPT ver-
sion 1.3 [12]. It has been necessary to slightly patch the original version of CKPT so
as to be able to make the difference between the execution following the storage of the
image of the current process in a file and the execution which is the result of resuming
the execution from an image. No other checkpointer has been tried yet. However, we
believe it shall be easy to implement this solution on top of any checkpointer as long as
functions presented in Sec. 2 are implemented.

DOMPCC (the Distributed OpenMP compiler we developed) is built on top of GCC
version 3.2.2. It consists in adding an extra stage in the usual compilation chain for
C programs. As shown on Fig. 2, the extra compilation stage (SC, which stands for
Specific Compiler) has been added after the C preprocessor (CPP) and before the stage
of compilation itself (CC).

.c cpp .i cc .s as .o ld

.aar

sc

.c cpp

.i

.h

.h

a.out

Usual compilation chain

extra stage
dompcc

Fig. 2. The compilation chain for DOMPCC

Including the extra compilation stage at this location in the compilation chain allows
to take benefits of the result of the C preprocessor (file inclusions, macros, conditionals)
and thus to work on a complete C program free of lines beginning with a pound sign
(except lines beginning by “# pragma omp” used to identify OpenMP directives). After
transforming the original program using SC, the generated “.c” file is processed by the
C preprocessor again in order to return in the usual compilation chain at the stage where
the usual compilation chain was rerouted.

It is important to note that, as DOMPCC is based on GCC, any option of GCC is nat-
urally available for DOMPCC. For example, if this implementation has to be included
in a larger application, it is possible to use DOMPCC instead of GCC for any compila-
tion step. This way, paths to header files and libraries are set correctly and others if any
for larger applications can be added conveniently. Once compiled, the executable file is
autonomous and can be run directly.

202 É. Renault

At present, not all the constructs of OpenMP have been implemented and only “par-
allel sections” and “parallel for” constructs are available. The decision to focus on these
two constructs first is based on the fact that they represent the main cases for parallel
applications. However, considering there is no technology lock for the implementation
of the other constructs, they should be available soon.

5 Discussion

There are many advantages to implement an OpenMP compiler for distributed-memory
machine with CAPE and there are also drawbacks. This section presents the main ben-
efits of using CAPE and also the main problems, whereas these problems are inherent
to the CAPE (ie. our implementation on top of a distributed memory system) or not.

5.1 Advantages

Use of Checkpoints. The most obvious advantage of using CAPE for an implementation
of OpenMP on top of a distributed memory architecture is the use of checkpoints. Even
if checkpoints are not used to secure the execution of the application and avoid restarting
from the beginning in case of problem, they are still available to perform this task.

Indirect Access to Memory Taken into Account. When using OpenMP on top of a dis-
tributed memory machine, it is necessary to exchange data between nodes. With CAPE,
exchanges are performed before and after the parallel parts inside the program; for
other implementations it may also occur inside the parallel parts. In order to perform
the transfer of these information, it is mandatory to determine the location of the cor-
responding memory area. This may be a very difficult task for some implementations
as updated memory areas may be accessed through indirections (ie. using pointers typ-
ically). This is not a problem for an implementation on top of a distributed-memory
architecture using CAPE as the whole virtual address space is scanned to determine
whether a memory area has been updated or not.

Resources used “on demand”. Unlike shared-memory systems for which it is very
difficult to add resources (especially CPUs) when needed while an application is run-
ning, distributed-memory systems are usually quite flexible. With the implementation
of OpenMP with CAPE, it is possible to run different parallel parts of a program with
various number of nodes. This means that with CAPE it is possible to use only needed
resources to run a program.

No Stack Size Limitation. In a shared-memory implementation of OpenMP, all threads
are sharing the same virtual address space. This means that all stacks (one for each
thread) have to be stored in a single virtual address space. As a result, as one way
or another stacks have to be stored the one after the other one, the size of stacks is
limited. There is no such a limitation with a implementation of OpenMP on a distributed
memory system as whatever the number of threads, there is always a single stack for
each virtual address space.

Distributed Implementation of OpenMP 203

5.2 Drawbacks Inherent to CAPE

Cannot use Shared Variables. In order to ensure the consistency of the memory dis-
tributed on a set of machines, we assumed that all parallel parts of the OpenMP program
satisfy Bernstein’s conditions. However, this does not allow to take benefits of shared
variables. As a result, we need a mechanism to enable all threads to take into account
any modifications operated on shared variables.

5.3 Drawbacks Inherent to the Implementation

Excessive use of Bandwidth. At present, complete checkpoints are sent over the net-
work, first to provide each node all the information needed to restart the process for a
specific region of the parallel part and second to return to the master node the result of
the execution. In order to reduce the use of the network bandwidth, we have planned to
transfer delta files only and no checkpoint file anymore.

Computation of Delta Files. In the current implementation, the computation of delta
files is performed after the generation of checkpoints. This means that two checkpoint
files are scanned at the same time to determine the difference between both. To reduce
the latency to get the list of modifications that occurred during the execution, we have
planned to use an incremental checkpointer instead of the checkpointer we are using
that systematically saves the whole virtual address space for each checkpoint.

No Support for Fortran Programs. At present, only the C programming language can
take benefits of our work. A Fortran implementation is scheduled in the future.

6 Performance Evaluation

The performance have been measured on a platform composed of a set of eight Pentium-
III running at 800 MHz with 1.2 GB of memory on each node and operated by Linux
RedHat version 3.2.2-5 (using Linux kernel 2.4.20-8). The interconnexion network on
this platform is either Ethernet 100 Mbit/s or Myrinet 2000. However, our implemen-
tation is intended to run on any distributed parallel system, we used only the Ethernet
network so as to be as generic as possible.

In order to measure performance, we used a matrix-matrix product of square matri-
ces. The matrix-matrix product has not been optimized. Matrices are dense and each
value in the resulting matrix is the sum of the scalar products of the corresponding lines
and rows. Table 1 provides the size of the matrices used for the performance evaluation,
the total number of elements in each matrix and the size of image files.

Fig. 3(a) presents the speedup for various matrix size. Performance measurements
show that the larger the size of the matrix the higher the speedup. In fact, as the com-
plexity of the matrix-matrix product is O(n3), the larger the matrices, the less important
both the network latency to transfer images (which complexity is O(n2)) and the time
to determine the set of updated variables (which complexity is also O(n2)). As a result,
performance measurements show that, with the current implementation, this technique

204 É. Renault

Table 1. Matrix and checkpoint size

Matrix size Number of elements Checkpoint size

840×840 705 600 → 0.7 Me 10 274 204 → 9.8 MB
1680×1680 2 822 400 → 2.8 Me 35 677 596 → 34.0 MB
2520×2520 6 350 400 → 6.3 Me 78 009 759 → 74.4 MB
3360×3360 11 289 600 → 11.3 Me 137 282 972 → 130.9 MB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

d
up

number of nodes

11.3 Me
6.3 Me
2.8 Me
0.7 Me

(a) Speedup for OpenMP over CAPE

 0

 1000

 2000

 3000

 4000

 5000

 2 3 4 5 6 7 8

tim
e

(s
)

number of nodes

OpenMP over CAPE − 11.3 Me
MPI − 11.3 Me

OpenMP over CAPE − 6.3 Me
MPI − 6.3 Me

(b) OpenMP over CAPE vs. MPI

Fig. 3. Performance evaluation

is well-adapted to coarse-grain parallel loops. Moreover, performance show that the
larger the size of the grain of parallelism, the better the speed up.

The comparison with an equivalent MPI program is interesting. Fig. 3(b) presents ex-
ecution times for matrix-matrix products with both CAPE and MPI. The MPI program
was written for the experiment and satisfies the same requirements as for CAPE (for the
complexity essentially). Performance measurements have been done on the same plat-
form with similar experimental conditions (especially average load for CPUs). MPI is
MPICH version 1.2.5.10 with driver CH P4. Fig. 3(b) shows that, even if the execution
time with MPI is always faster than the execution time with CAPE), the time difference
between the execution of the MPI program and the program automatically generated by
CAPE from the sequential version is not very large.

At present, the main part of the overhead when using CAPE is in the image man-
agement. According to Fig. 1(c) and Fig. 1(d), every time an image is generated, it is
written on the disk; then, “after” images are compared to the “original” image and the
difference is also stored on the disk. A significant improvement could be achieved while
using an incremental checkpointer that would directly generates “delta” data instead of
“after” images, avoiding the cost to evaluate the difference with the “original” image.

7 Conclusion

This article presented a new way of transforming a sequential program into a par-
allel program using checkpointing techniques. We showed that CAPE is consistent,

Distributed Implementation of OpenMP 205

i.e. executing a program tranformed using CAPE and executing the original program
provide the same result. However, executing a program with CAPE provides three main
advantages: first, no specific development is required to develop a distributed-memory
parallel version of a program from a sequential version or a shared-memory parallel
version; second, as an image is created for each part to be executed concurrently and
as no message is exchanged between nodes, it is easier for CAPE to recover in case of
problem; third, CAPE is more flexible with the number of nodes required for execution
(nodes are used on demand, i.e. only one node is used for the execution of the sequen-
tial parts of the program and the number of nodes required for execution may change
during the execution).

Then, we presented the distributed implementation of OpenMP we have developed
using CAPE. Performance measurements show that it is interesting to execute coarse-
grain parallel applications and that the larger the size of the grain, the higher the speed
up. Performance measurements also showed that the execution time for large matrices
with our implementation is quite similar to the execution time when using MPI. Inves-
tigations show that the difference between both execution times is mainly due to the
overhead involved by the management of the images and we proposed a solution to
investigate in order to bypass the problem.

References

1. Buyya, R.: High Performance Cluster Computing: Architectures and Systems, vol. 1.
Prentice-Hall, Englewood Cliffs (1999)

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Or-
ganizations. The International Journal of High Performance Computing Applications 15(3),
200–222 (2001)

3. Leuf, B.: Peer to Peer. Collaboration and Sharing over the Internet. Addison-Wesley, Reading
(2002)

4. Loveman, D.B.: High Performance Fortran. IEEE Parallel & Distributed Technology: Sys-
tems & Applications 1(1), 25–42 (1993)

5. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.: PVM: Parallel
Virtual Machine: A Users’ Guide and Tutorial for Network Parallel Computing. Scientific
and Engineering Computation Series. MIT Press, Cambridge (1994)

6. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Refer-
ence, 2nd edn. Scientific and Engineering Computation Series. MIT Press, Cambridge (1998)

7. OpenMP Architecture Review Board: OpenMP Application Program Interface, Version 2.5
Public Draft (2004)

8. Allen, J.R., Callahan, D., Kennedy, K.: Automatic Decomposition of Scientific Programs
for Parallel Execution. In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, Munich, West Germany, pp. 63–76. ACM Press, New
York (1987)

9. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R., Darte, A.
(eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp. 79–103. Springer, Hei-
delberg (1996)

10. Barthou, D., Feautrier, P., Redon, X.: On the Equivalence of Two Systems of Affine Recur-
rence Equations. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp.
309–313. Springer, Heidelberg (2002)

206 É. Renault

11. Alias, C., Barthou, D.: On the Recognition of Algorithm Templates. In: Knoop, J., Zimmer-
mann, W. (eds.) Proceedings of the 2nd International Workshop on Compiler Optimization
meets Compiler Verification, Warsaw, Poland, pp. 51–65 (2003)

12. Web page: Ckpt (2005), http://www.cs.wisc.edu/∼zandy/ckpt/
13. Osman, S., Subhraveti, D., Su, G., Nieh, J.: The Design and Implementation of Zap: A Sys-

tem for Migrating Computing Environments. In: Proceedings of the 5th USENIX Sympo-
sium on Operating Systems Design and Implementation, Boston, MA, pp. 361–376 (2002)

14. Plank, J.S.: An Overview of Checkpointing in Uniprocessor and Distributed Systems, Fo-
cusing on Implementation and Performance. Technical Report UT-CS-97-372, Department
of Computer Science, University of Tennessee (1997)

15. Merlin, J.: Distributed OpenMP: extensions to OpenMP for SMP clusters. In: 2nd European
Workshop on OpenMP (EWOMP 2000), Edinburgh, UK (2000)

16. Karlsson, S., Lee, S.W., Brorsson, M., Sartaj, S., Prasanna, V.K., Uday, S.: A fully compliant
OpenMP implementation on software distributed shared memory. In: Sahni, S.K., Prasanna,
V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp. 195–206. Springer, Heidelberg
(2002)

17. Huang, L., Chapman, B., Liu, Z.: Towards a more efficient implementation of OpenMP for
clusters via translation to global arrays. Parallel Computing 31(10-12), 1114–1139 (2005)

18. Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to MPI. In: Pro-
ceedings of the 19th annual international conference on Supercomputing, pp. 189–198. ACM
Press, Cambridge (2005)

19. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. The International
Journal of Supercomputer Applications and High Performance Computing 11(2), 115–128
(1997)

20. Web page: Globus (2007), http://www.globus.org/
21. Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. In: The 8th

International Conference on Distributed Computing Systems, San Jose, CA, pp. 104–111.
IEEE Computer Society Press, Los Alamitos (1988)

22. Web page: Condor (2007), http://www.cs.wisc.edu/condor/
23. Fedak, G., Germain, C., Néri, V., Cappello, F.: XtremWeb: A Generic Global Computing

System. In: Buyya, R., Mohay, G., Roe, P. (eds.) Proceedings First IEEE/ACM International
Symposium on Cluster Computing and the Grid, Brisbane, Australia, pp. 582–587. IEEE
Computer Society Press, Los Alamitos (2001)

24. Web page: XTremWeb (2006), http://www.xtremweb.org/

http://www.cs.wisc.edu/~zandy/ckpt/
http://www.globus.org/
http://www.cs.wisc.edu/condor/
http://www.xtremweb.org/

Author Index

an Mey, Dieter 54
Ayguadé, Eduard 1, 37

Barnhart, Robert 125
Bastoul, Cédric 185
Boku, Taisuke 143
Bradley, Con 89
Broquedis, François 161

Chapman, Barbara 25, 138
Chen, Li 112
Chen, Tong 65
Copty, Nawal 1
Cristal, Adrian 37

Delamare, Clément 185
Duran, Alejandro 1

Ferrer, Roger 37
Fujishiro, Issei 112

Gan, Ge 157
Gaster, Benedict R. 89
Goglin, Brice 161

Hoàng, Kim D. 77
Hoeflinger, Jay 1
Hu, Changjun 101, 134
Hu, Ziang 157
Huang, Lei 25, 138

Jaillet, Christophe 148
Jiang, Yi 157
Jin, Haoqiang 25
Jorgensen, Paul 125

Karl, Wolfgang 77
Kozlov, Alexei Vladimirovich 13
Krajecki, Michaël 148

Labarta, Jesús 37
Lee, Jinpil 143
Leopold, Claudia 173
Li, Jianjiang 101, 134
Lin, Yuan 1

Manzano, Joseph B. 157
Martorell, Xavier 37
Massaioli, Federico 1
Milovanović, Miloš 37

Namyst, Raymond 161

O’Brien, Kathryn 65
O’Brien, Kevin 65

Park, Jung-Gyu 153, 157
Park, Jun Sung 153
Pe, Jsun 13

Renault, Éric 195

Salva, Sébastien 185
Sarholz, Samuel 54
Sato, Mitsuhisa 143
Sethuraman, Girija 138
Sinnen, Oliver 13
Song, Hyo-Jung 153, 157
Su, Ernesto 1
Suess, Michael 173
Sura, Zehra 65

Tao, Jie 77
Tao, Yonglei 125
Terboven, Christian 54
Thibault, Samuel 161
Trefftz, Christian 125

Unnikrishnan, Priya 1
Unsal, Osman S. 37

Valero, Mateo 37

Wacrenier, Pierre-André 161
Wang, Jue 101, 134
Wei, Haitao 129

Yu, Junqing 129

Zhang, Guansong 1
Zhang, Jilin 101, 134
Zhang, Tao 65

	Title Page
	Preface
	Organization
	Table of Contents
	A Proposal for Task Parallelism in OpenMP
	Introduction
	Motivation and Related Work
	TaskProposal
	Terminology
	The Task Construct
	Synchronization Constructs
	Other Constructs
	OpenMP Modifications

	Design Principles
	ExamplesofUse
	Pointer Chasing in Parallel
	Recursive Task

	Future Work
	Conclusions
	References

	Support for Fine Grained Dependent Tasks in OpenMP
	Introduction
	New $tasks-task$ Directives
	Compiler Implementation
	Parser
	Scheduler
	Code Generation

	Practical Evaluation and Performance
	Workload
	Experimental Environment
	Results

	Conclusions
	References

	Performance Evaluation of a Multi-zone Application in Different OpenMP Approaches
	Introduction
	Multi-zone Application Benchmark
	Benchmark Implementations
	Hybrid MPI+OpenMP
	Nested OpenMP
	Subteam in OpenMP
	OpenMP at Outer Level
	Workqueuing Model

	PerformanceResults
	Testing Environment
	Multi-level Parallelism
	Unbalanced Workload

	Conclusion
	References

	Transactional Memory and OpenMP
	Introduction
	BasicConcepts
	Our “Proof-of-Concept” Approach
	Is OpenMP ATOMIC a Transaction?
	Is OpenMP CRITICAL a Transaction?
	Proposed OpenMP Extensions for TM
	Nebelung Library Interface and Behavior
	Source-to-Source Translation in Mercurium
	Support for Hardware Transactional Memory

	Open Issues
	Conclusions
	References

	OpenMP on Multicore Architectures
	Introduction
	TheMachinery
	Memory Performance
	Memory Latency and Bandwidth
	Matrix Transposition

	Application Performance
	Sparse Matrix-Vector-Multiplication
	Contact Analysis of Bevel Gears
	Simulation of Deformable Objects in VR
	ThermoFlow
	The Navier Stokes Solver TFS

	Conclusion
	References

	Supporting OpenMP on Cell
	Introduction
	SystemOverview
	Threads and Synchronization
	Code Generation
	Memory Model
	Experimental Results
	Conclusions
	References

	CMP Cache Architecture and the OpenMP Performance
	Motivation
	Related Work
	The Cache Simulator
	Experimental Results
	Conclusions
	References

	Exploiting Loop-Level Parallelism for SIMD Arrays Using $OpenMP$
	Introduction
	The CSX Architecture
	$OpenMP SIMD$
	Work-Sharing Constructs
	Data Environment

	AnExample
	Conclusion
	References

	OpenMP Extensions for Irregular Parallel Applications on Clusters
	Introduction
	OpenMP Extensions for Irregular Applications
	Generating Communication Sets and SPMD Code
	Communication Scheduling
	Low Overhead Locality Transformation Scheme
	Evaluation and Experimental Results
	Conclusions
	References

	Optimization Strategies Using Hybrid MPI+OpenMP Parallelization for Large-Scale Data Visualization on Earth Simulator
	Introduction
	Parallel Visualization Library on Earth Simulator
	Optimization for Parallel Streamline Generation
	Motivation
	Thread Parallelization Based on Seed Point Distribution
	Experimental Results

	Optimization for Parallel Volume Rendering Module
	Multi-coloring for Avoiding Data Race
	Hybrid-Space Parallel Volume Rendering
	Revise Ray-Tracing Algorithm for Avoiding Coherence
	Experimental Results

	Conclusions
	References

	An Investigation on Testing of Parallelized Codewith OpenMP
	Introduction
	Testing Parallelized Loops
	Conclusion
	References

	Loading OpenMP to Cell: An Effective Compiler Framework for Heterogeneous Multi-core Chip
	Introduction
	The OpenMP Compiler on Cell
	Experiments and Results
	Conclusions
	References

	OpenMP Implementation of Parallel Linear Solver for Reservoir Simulation
	Introduction
	Description of the Linear Solver
	Parallel Implementation of MBLSOR
	PerformanceResults
	Conclusions
	References

	Parallel Data Flow Analysis for OpenMP Programs
	Introduction
	OpenMP Memory Model
	Parallel Data Flow Analysis Framework for OpenMP
	Compiler Optimizations

	Conclusion and Future Work
	References

	Design and Implementation of OpenMPD: An OpenMP-Like Programming Language for Distributed Memory Systems
	Introduction
	OverviewofOpenMPD
	Implementation and Performance Evaluation
	Current Status and Future Work
	References

	A New Memory Allocation Model for Parallel Search Space Data Structures with OpenMP
	Introduction
	Computational Times Variability Using OpenMP
	Multithreaded Processes in Shared Memory
	Execution Times Variability with OpenMP: A Solution

	Conclusion
	References

	Implementation of OpenMP Work-Sharing on the Cell Broadband Engine Architecture
	Introduction
	The Cell Broadband Engine Architecture
	Problem Description

	Proposed Work-Sharing Implementation in the CBE
	Experiments
	Conclusion
	References

	Toward an Automatic Code Layout Methodology
	Introduction
	Framework and Methodology
	Experimental Test Bed
	Conclusions and Future Work
	References

	An Efficient OpenMP Runtime System for Hierarchical Architectures
	Introduction
	Scheduling Applications Featuring Nested, Irregular Parallelism
	MaGOMP: An Implementation of GNU OpenMP for Hierarchical Machines
	The $Bubble$ Scheduling Model
	Generating Bubbles Out of OpenMP Parallel Sections
	A Scheduling Strategy Suited to OpenMP Nested Parallelism

	Performance Evaluation
	Conclusion
	Software Availability
	References

	Problems, Workarounds and Possible Solutions Implementing the Singleton Pattern with C++ and OpenMP
	Introduction
	The Singleton Pattern
	Thread-Safe Singleton Implementation Variants
	The Safe Version Using One Lock Per Protected Object
	Double-Checked Locking and Why It Fails
	Using a Singleton Cache
	The Meyers Singleton

	Performance
	OpenMP Enhancement Proposals for C++
	AthenaMP
	Related Work
	Summary and Contributions
	References

	Web Service Call Parallelization Using OpenMP
	Introduction
	Web Services Overview and Related Work
	Web Service Call Parallelization
	A Naive Solution: Using the Task Pool Paradigm
	A Better Resource Management Using the Pipeline Paradigm
	An Optimized Pipeline for Web Service Calls

	Experimentation Based on the Copernic Project
	Conclusion and Perspectives
	References

	Distributed Implementation of OpenMP Based on Checkpointing Aided Parallel Execution
	Introduction
	CAPE
	Proof of Concept
	Distributed Implementation of OpenMP Using CAPE
	Discussion
	Advantages
	Drawbacks Inherent to CAPE
	Drawbacks Inherent to the Implementation

	Performance Evaluation
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

